• Title/Summary/Keyword: deep machine learning

Search Result 1,085, Processing Time 0.031 seconds

Deep Reinforcement Learning in ROS-based autonomous robot navigation

  • Roland, Cubahiro;Choi, Donggyu;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.47-49
    • /
    • 2022
  • Robot navigation has seen a major improvement since the the rediscovery of the potential of Artificial Intelligence (AI) and the attention it has garnered in research circles. A notable achievement in the area was Deep Learning (DL) application in computer vision with outstanding daily life applications such as face-recognition, object detection, and more. However, robotics in general still depend on human inputs in certain areas such as localization, navigation, etc. In this paper, we propose a study case of robot navigation based on deep reinforcement technology. We look into the benefits of switching from traditional ROS-based navigation algorithms towards machine learning approaches and methods. We describe the state-of-the-art technology by introducing the concepts of Reinforcement Learning (RL), Deep Learning (DL) and DRL before before focusing on visual navigation based on DRL. The case study preludes further real life deployment in which mobile navigational agent learns to navigate unbeknownst areas.

  • PDF

Deep Learning Frameworks for Cervical Mobilization Based on Website Images

  • Choi, Wansuk;Heo, Seoyoon
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.1
    • /
    • pp.2261-2266
    • /
    • 2021
  • Background: Deep learning related research works on website medical images have been actively conducted in the field of health care, however, articles related to the musculoskeletal system have been introduced insufficiently, deep learning-based studies on classifying orthopedic manual therapy images would also just be entered. Objectives: To create a deep learning model that categorizes cervical mobilization images and establish a web application to find out its clinical utility. Design: Research and development. Methods: Three types of cervical mobilization images (central posteroanterior (CPA) mobilization, unilateral posteroanterior (UPA) mobilization, and anteroposterior (AP) mobilization) were obtained using functions of 'Download All Images' and a web crawler. Unnecessary images were filtered from 'Auslogics Duplicate File Finder' to obtain the final 144 data (CPA=62, UPA=46, AP=36). Training classified into 3 classes was conducted in Teachable Machine. The next procedures, the trained model source was uploaded to the web application cloud integrated development environment (https://ide.goorm.io/) and the frame was built. The trained model was tested in three environments: Teachable Machine File Upload (TMFU), Teachable Machine Webcam (TMW), and Web Service webcam (WSW). Results: In three environments (TMFU, TMW, WSW), the accuracy of CPA mobilization images was 81-96%. The accuracy of the UPA mobilization image was 43~94%, and the accuracy deviation was greater than that of CPA. The accuracy of the AP mobilization image was 65-75%, and the deviation was not large compared to the other groups. In the three environments, the average accuracy of CPA was 92%, and the accuracy of UPA and AP was similar up to 70%. Conclusion: This study suggests that training of images of orthopedic manual therapy using machine learning open software is possible, and that web applications made using this training model can be used clinically.

Verified Deep Learning-based Model Research for Improved Uniformity of Sputtered Metal Thin Films (스퍼터 금속 박막 균일도 예측을 위한 딥러닝 기반 모델 검증 연구)

  • Eun Ji Lee;Young Joon Yoo;Chang Woo Byun;Jin Pyung Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.113-117
    • /
    • 2023
  • As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.

  • PDF

Deep Analysis of Causal AI-Based Data Analysis Techniques for the Status Evaluation of Casual AI Technology (인과적 인공지능 기반 데이터 분석 기법의 심층 분석을 통한 인과적 AI 기술의 현황 분석)

  • Cha Jooho;Ryu Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.45-52
    • /
    • 2023
  • With the advent of deep learning, Artificial Intelligence (AI) technology has experienced rapid advancements, extending its application across various industrial sectors. However, the focus has shifted from the independent use of AI technology to its dispersion and proliferation through the open AI ecosystem. This shift signifies the transition from a phase of research and development to an era where AI technology is becoming widely accessible to the general public. However, as this dispersion continues, there is an increasing demand for the verification of outcomes derived from AI technologies. Causal AI applies the traditional concept of causal inference to AI, allowing not only the analysis of data correlations but also the derivation of the causes of the results, thereby obtaining the optimal output values. Causal AI technology addresses these limitations by applying the theory of causal inference to machine learning and deep learning to derive the basis of the analysis results. This paper analyzes recent cases of causal AI technology and presents the major tasks and directions of causal AI, extracting patterns between data using the correlation between them and presenting the results of the analysis.

Bioimage Analyses Using Artificial Intelligence and Future Ecological Research and Education Prospects: A Case Study of the Cichlid Fishes from Lake Malawi Using Deep Learning

  • Joo, Deokjin;You, Jungmin;Won, Yong-Jin
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Ecological research relies on the interpretation of large amounts of visual data obtained from extensive wildlife surveys, but such large-scale image interpretation is costly and time-consuming. Using an artificial intelligence (AI) machine learning model, especially convolution neural networks (CNN), it is possible to streamline these manual tasks on image information and to protect wildlife and record and predict behavior. Ecological research using deep-learning-based object recognition technology includes various research purposes such as identifying, detecting, and identifying species of wild animals, and identification of the location of poachers in real-time. These advances in the application of AI technology can enable efficient management of endangered wildlife, animal detection in various environments, and real-time analysis of image information collected by unmanned aerial vehicles. Furthermore, the need for school education and social use on biodiversity and environmental issues using AI is raised. School education and citizen science related to ecological activities using AI technology can enhance environmental awareness, and strengthen more knowledge and problem-solving skills in science and research processes. Under these prospects, in this paper, we compare the results of our early 2013 study, which automatically identified African cichlid fish species using photographic data of them, with the results of reanalysis by CNN deep learning method. By using PyTorch and PyTorch Lightning frameworks, we achieve an accuracy of 82.54% and an F1-score of 0.77 with minimal programming and data preprocessing effort. This is a significant improvement over the previous our machine learning methods, which required heavy feature engineering costs and had 78% accuracy.

Stock Price Direction Prediction Using Convolutional Neural Network: Emphasis on Correlation Feature Selection (합성곱 신경망을 이용한 주가방향 예측: 상관관계 속성선택 방법을 중심으로)

  • Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.21-39
    • /
    • 2020
  • Recently, deep learning has shown high performance in various applications such as pattern analysis and image classification. Especially known as a difficult task in the field of machine learning research, stock market forecasting is an area where the effectiveness of deep learning techniques is being verified by many researchers. This study proposed a deep learning Convolutional Neural Network (CNN) model to predict the direction of stock prices. We then used the feature selection method to improve the performance of the model. We compared the performance of machine learning classifiers against CNN. The classifiers used in this study are as follows: Logistic Regression, Decision Tree, Neural Network, Support Vector Machine, Adaboost, Bagging, and Random Forest. The results of this study confirmed that the CNN showed higher performancecompared with other classifiers in the case of feature selection. The results show that the CNN model effectively predicted the stock price direction by analyzing the embedded values of the financial data

Beta and Alpha Regularizers of Mish Activation Functions for Machine Learning Applications in Deep Neural Networks

  • Mathayo, Peter Beatus;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.136-141
    • /
    • 2022
  • A very complex task in deep learning such as image classification must be solved with the help of neural networks and activation functions. The backpropagation algorithm advances backward from the output layer towards the input layer, the gradients often get smaller and smaller and approach zero which eventually leaves the weights of the initial or lower layers nearly unchanged, as a result, the gradient descent never converges to the optimum. We propose a two-factor non-saturating activation functions known as Bea-Mish for machine learning applications in deep neural networks. Our method uses two factors, beta (𝛽) and alpha (𝛼), to normalize the area below the boundary in the Mish activation function and we regard these elements as Bea. Bea-Mish provide a clear understanding of the behaviors and conditions governing this regularization term can lead to a more principled approach for constructing better performing activation functions. We evaluate Bea-Mish results against Mish and Swish activation functions in various models and data sets. Empirical results show that our approach (Bea-Mish) outperforms native Mish using SqueezeNet backbone with an average precision (AP50val) of 2.51% in CIFAR-10 and top-1accuracy in ResNet-50 on ImageNet-1k. shows an improvement of 1.20%.

Research Trend on Machine Learning Healthcare Based on Keyword Frequency and Centrality Analysis : Focusing on the United States, the United Kingdom, Korea (키워드 빈도 및 중심성 분석 기반의 머신러닝 헬스케어 연구 동향 : 미국·영국·한국을 중심으로)

  • Lee Taekkyeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.149-163
    • /
    • 2023
  • In this study we analyze research trends on machine learning healthcare based on papers from the United States, the United Kingdom, and Korea. In Elsevier's Scopus, we collected 3425 papers related to machine learning healthcare published from 2018 to 2022. Keyword frequency and centrality analysis were conducted using the abstracts of the collected papers. We identified keywords with high frequency of appearance by calculating keyword frequency and found central research keywords through the centrality analysis by country. Through the analysis results, research related to machine learning, deep learning, healthcare, and the covid virus was conducted as the most central and highly mediating research in each country. As the implication, studies related to electronic health information-based treatment, natural language processing, and privacy in Korea have lower degree centrality and betweenness centrality than those of the United States and the United Kingdom. Thus, various convergence research applied with machine learning is needed for these fields.

A Study on the Performance of Deep learning-based Automatic Classification of Forest Plants: A Comparison of Data Collection Methods (데이터 수집방법에 따른 딥러닝 기반 산림수종 자동분류 정확도 변화에 관한 연구)

  • Kim, Bomi;Woo, Heesung;Park, Joowon
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.1
    • /
    • pp.23-30
    • /
    • 2020
  • The use of increased computing power, machine learning, and deep learning techniques have dramatically increased in various sectors. In particular, image detection algorithms are broadly used in forestry and remote sensing areas to identify forest types and tree species. However, in South Korea, machine learning has rarely, if ever, been applied in forestry image detection, especially to classify tree species. This study integrates the application of machine learning and forest image detection; specifically, we compared the ability of two machine learning data collection methods, namely image data captured by forest experts (D1) and web-crawling (D2), to automate the classification of five trees species. In addition, two methods of characterization to train/test the system were investigated. The results indicated a significant difference in classification accuracy between D1 and D2: the classification accuracy of D1 was higher than that of D2. In order to increase the classification accuracy of D2, additional data filtering techniques were required to reduce the noise of uncensored image data.

Synthetic Image Generation for Military Vehicle Detection (군용물체탐지 연구를 위한 가상 이미지 데이터 생성)

  • Se-Yoon Oh;Hunmin Yang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.392-399
    • /
    • 2023
  • This research paper investigates the effectiveness of using computer graphics(CG) based synthetic data for deep learning in military vehicle detection. In particular, we explore the use of synthetic image generation techniques to train deep neural networks for object detection tasks. Our approach involves the generation of a large dataset of synthetic images of military vehicles, which is then used to train a deep learning model. The resulting model is then evaluated on real-world images to measure its effectiveness. Our experimental results show that synthetic training data alone can achieve effective results in object detection. Our findings demonstrate the potential of CG-based synthetic data for deep learning and suggest its value as a tool for training models in a variety of applications, including military vehicle detection.