• 제목/요약/키워드: deep machine learning

검색결과 1,092건 처리시간 0.024초

Recent deep learning methods for tabular data

  • Yejin Hwang;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • 제30권2호
    • /
    • pp.215-226
    • /
    • 2023
  • Deep learning has made great strides in the field of unstructured data such as text, images, and audio. However, in the case of tabular data analysis, machine learning algorithms such as ensemble methods are still better than deep learning. To keep up with the performance of machine learning algorithms with good predictive power, several deep learning methods for tabular data have been proposed recently. In this paper, we review the latest deep learning models for tabular data and compare the performances of these models using several datasets. In addition, we also compare the latest boosting methods to these deep learning methods and suggest the guidelines to the users, who analyze tabular datasets. In regression, machine learning methods are better than deep learning methods. But for the classification problems, deep learning methods perform better than the machine learning methods in some cases.

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.

Enhanced Machine Learning Algorithms: Deep Learning, Reinforcement Learning, and Q-Learning

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1001-1007
    • /
    • 2020
  • In recent years, machine learning algorithms are continuously being used and expanded in various fields, such as facial recognition, signal processing, personal authentication, and stock prediction. In particular, various algorithms, such as deep learning, reinforcement learning, and Q-learning, are continuously being improved. Among these algorithms, the expansion of deep learning is rapidly changing. Nevertheless, machine learning algorithms have not yet been applied in several fields, such as personal authentication technology. This technology is an essential tool in the digital information era, walking recognition technology as promising biometrics, and technology for solving state-space problems. Therefore, algorithm technologies of deep learning, reinforcement learning, and Q-learning, which are typical machine learning algorithms in various fields, such as agricultural technology, personal authentication, wireless network, game, biometric recognition, and image recognition, are being improved and expanded in this paper.

머신러닝과 딥러닝 기법을 이용한 부산 전략산업과 수출에 의한 고용과 소득 예측 (Machine Learning and Deep Learning Models to Predict Income and Employment with Busan's Strategic Industry and Export)

  • 이재득
    • 무역학회지
    • /
    • 제46권1호
    • /
    • pp.169-187
    • /
    • 2021
  • This paper analyzes the feasibility of using machine learning and deep learning methods to forecast the income and employment using the strategic industries as well as investment, export, and exchange rates. The decision tree, artificial neural network, support vector machine, and deep learning models were used to forecast the income and employment in Busan. The following were the main findings of the comparison of their predictive abilities. First, the decision tree models predict the income and employment well. The forecasting values for the income and employment appeared somewhat differently according to the depth of decision trees and several conditions of strategic industries as well as investment, export, and exchange rates. Second, since the artificial neural network models show that the coefficients are somewhat low and RMSE are somewhat high, these models are not good forecasting the income and employment. Third, the support vector machine models show the high predictive power with the high coefficients of determination and low RMSE. Fourth, the deep neural network models show the higher predictive power with appropriate epochs and batch sizes. Thus, since the machine learning and deep learning models can predict the employment well, we need to adopt the machine learning and deep learning models to forecast the income and employment.

Artificial intelligence, machine learning, and deep learning in women's health nursing

  • Jeong, Geum Hee
    • 여성건강간호학회지
    • /
    • 제26권1호
    • /
    • pp.5-9
    • /
    • 2020
  • Artificial intelligence (AI), which includes machine learning and deep learning has been introduced to nursing care in recent years. The present study reviews the following topics: the concepts of AI, machine learning, and deep learning; examples of AI-based nursing research; the necessity of education on AI in nursing schools; and the areas of nursing care where AI is useful. AI refers to an intelligent system consisting not of a human, but a machine. Machine learning refers to computers' ability to learn without being explicitly programmed. Deep learning is a subset of machine learning that uses artificial neural networks consisting of multiple hidden layers. It is suggested that the educational curriculum should include big data, the concept of AI, algorithms and models of machine learning, the model of deep learning, and coding practice. The standard curriculum should be organized by the nursing society. An example of an area of nursing care where AI is useful is prenatal nursing interventions based on pregnant women's nursing records and AI-based prediction of the risk of delivery according to pregnant women's age. Nurses should be able to cope with the rapidly developing environment of nursing care influenced by AI and should understand how to apply AI in their field. It is time for Korean nurses to take steps to become familiar with AI in their research, education, and practice.

머신러닝 및 딥러닝 연구동향 분석: 토픽모델링을 중심으로 (Research Trends Analysis of Machine Learning and Deep Learning: Focused on the Topic Modeling)

  • 김창식;김남규;곽기영
    • 디지털산업정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.

Recent advances in deep learning-based side-channel analysis

  • Jin, Sunghyun;Kim, Suhri;Kim, HeeSeok;Hong, Seokhie
    • ETRI Journal
    • /
    • 제42권2호
    • /
    • pp.292-304
    • /
    • 2020
  • As side-channel analysis and machine learning algorithms share the same objective of classifying data, numerous studies have been proposed for adapting machine learning to side-channel analysis. However, a drawback of machine learning algorithms is that their performance depends on human engineering. Therefore, recent studies in the field focus on exploiting deep learning algorithms, which can extract features automatically from data. In this study, we survey recent advances in deep learning-based side-channel analysis. In particular, we outline how deep learning is applied to side-channel analysis, based on deep learning architectures and application methods. Furthermore, we describe its properties when using different architectures and application methods. Finally, we discuss our perspective on future research directions in this field.

Predicting bond strength of corroded reinforcement by deep learning

  • Tanyildizi, Harun
    • Computers and Concrete
    • /
    • 제29권3호
    • /
    • pp.145-159
    • /
    • 2022
  • In this study, the extreme learning machine and deep learning models were devised to estimate the bond strength of corroded reinforcement in concrete. The six inputs and one output were used in this study. The compressive strength, concrete cover, bond length, steel type, diameter of steel bar, and corrosion level were selected as the input variables. The results of bond strength were used as the output variable. Moreover, the Analysis of variance (Anova) was used to find the effect of input variables on the bond strength of corroded reinforcement in concrete. The prediction results were compared to the experimental results and each other. The extreme learning machine and the deep learning models estimated the bond strength by 99.81% and 99.99% accuracy, respectively. This study found that the deep learning model can be estimated the bond strength of corroded reinforcement with higher accuracy than the extreme learning machine model. The Anova results found that the corrosion level was found to be the input variable that most affects the bond strength of corroded reinforcement in concrete.

'인공지능', '기계학습', '딥 러닝' 분야의 국내 논문 동향 분석 (Trend Analysis of Korea Papers in the Fields of 'Artificial Intelligence', 'Machine Learning' and 'Deep Learning')

  • 박홍진
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.283-292
    • /
    • 2020
  • 4차 산업혁명의 대표적인 이미지 중 하나인 인공지능은 2016년 알파고 이후에 인공지능 인식이 매우 높아져 있다. 본 논문은 학국교육학술정보원에서 제공하는 국내 논문 중 '인공지능', '기계학습', '딥 러닝'으로 검색된 국내 발표 논문에 대해서 분석하였다. 검색된 논문은 약 1만여건이며 논문 동향을 파악하기 위해 빈도분석과 토픽 모델링, 의미 연결망을 이용하였다. 추출된 논문을 분석한 결과, 2015년에 비해 2016년에는 인공지능 분야는 600%, 기계학습은 176%, 딥 러닝 분야는 316% 증가하여 알파고 이후에 인공지능 분야의 연구가 활발히 진행됨을 확인할 수 있었다. 또한, 2018년 부터는 기계학습보다 딥 러닝 분야가 더 많이 연구 발표되고 있다. 기계학습에서는 서포트 벡터 머신 모델이, 딥 러닝에서는 텐서플로우를 이용한 컨볼루션 신경망이 많이 활용되고 있음을 알 수 있었다. 본 논문은 '인공지능', '기계학습', '딥 러닝' 분야의 향후 연구 방향을 설정하는 도움을 제공할 수 있다.

Deep Learning-based Delinquent Taxpayer Prediction: A Scientific Administrative Approach

  • YongHyun Lee;Eunchan Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.30-45
    • /
    • 2024
  • This study introduces an effective method for predicting individual local tax delinquencies using prevalent machine learning and deep learning algorithms. The evaluation of credit risk holds great significance in the financial realm, impacting both companies and individuals. While credit risk prediction has been explored using statistical and machine learning techniques, their application to tax arrears prediction remains underexplored. We forecast individual local tax defaults in Republic of Korea using machine and deep learning algorithms, including convolutional neural networks (CNN), long short-term memory (LSTM), and sequence-to-sequence (seq2seq). Our model incorporates diverse credit and public information like loan history, delinquency records, credit card usage, and public taxation data, offering richer insights than prior studies. The results highlight the superior predictive accuracy of the CNN model. Anticipating local tax arrears more effectively could lead to efficient allocation of administrative resources. By leveraging advanced machine learning, this research offers a promising avenue for refining tax collection strategies and resource management.