• Title/Summary/Keyword: deep learning models

Search Result 1,393, Processing Time 0.025 seconds

Proposal of a Convolutional Neural Network Model for the Classification of Cardiomegaly in Chest X-ray Images (흉부 X-선 영상에서 심장비대증 분류를 위한 합성곱 신경망 모델 제안)

  • Kim, Min-Jeong;Kim, Jung-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.613-620
    • /
    • 2021
  • The purpose of this study is to propose a convolutional neural network model that can classify normal and abnormal(cardiomegaly) in chest X-ray images. The training data and test data used in this paper were used by acquiring chest X-ray images of patients diagnosed with normal and abnormal(cardiomegaly). Using the proposed deep learning model, we classified normal and abnormal(cardiomegaly) images and verified the classification performance. When using the proposed model, the classification accuracy of normal and abnormal(cardiomegaly) was 99.88%. Validation of classification performance using normal images as test data showed 95%, 100%, 90%, and 96% in accuracy, precision, recall, and F1 score. Validation of classification performance using abnormal(cardiomegaly) images as test data showed 95%, 92%, 100%, and 96% in accuracy, precision, recall, and F1 score. Our classification results show that the proposed convolutional neural network model shows very good performance in feature extraction and classification of chest X-ray images. The convolutional neural network model proposed in this paper is expected to show useful results for disease classification of chest X-ray images, and further study of CNN models are needed focusing on the features of medical images.

Efficient CT Image Denoising Using Deformable Convolutional AutoEncoder Model

  • Eon Seung, Seong;Seong Hyun, Han;Ji Hye, Heo;Dong Hoon, Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • Noise generated during the acquisition and transmission of CT images acts as a factor that degrades image quality. Therefore, noise removal to solve this problem is an important preprocessing process in image processing. In this paper, we remove noise by using a deformable convolutional autoencoder (DeCAE) model in which deformable convolution operation is applied instead of the existing convolution operation in the convolutional autoencoder (CAE) model of deep learning. Here, the deformable convolution operation can extract features of an image in a more flexible area than the conventional convolution operation. The proposed DeCAE model has the same encoder-decoder structure as the existing CAE model, but the encoder is composed of deformable convolutional layers and the decoder is composed of conventional convolutional layers for efficient noise removal. To evaluate the performance of the DeCAE model proposed in this paper, experiments were conducted on CT images corrupted by various noises, that is, Gaussian noise, impulse noise, and Poisson noise. As a result of the performance experiment, the DeCAE model has more qualitative and quantitative measures than the traditional filters, that is, the Mean filter, Median filter, Bilateral filter and NL-means method, as well as the existing CAE models, that is, MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio) and SSIM. (Structural Similarity Index Measure) showed excellent results.

A Study on the Media Recommendation System with Time Period Considering the Consumer Contextual Information Using Public Data (공공 데이터 기반 소비자 상황을 고려한 시간대별 미디어 추천 시스템 연구)

  • Kim, Eunbi;Li, Qinglong;Chang, Pilsik;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.95-117
    • /
    • 2022
  • With the emergence of various media types due to the development of Internet technology, advertisers have difficulty choosing media suitable for corporate advertising strategies. There are challenging to effectively reflect consumer contextual information when advertising media is selected based on traditional marketing strategies. Thus, a recommender system is needed to analyze consumers' past data and provide advertisers with personalized media based on the information consumers needs. Since the traditional recommender system provides recommendation services based on quantitative preference information, there is difficult to reflect various contextual information. This study proposes a methodology that uses deep learning to recommend personalized media to advertisers using consumer contextual information such as consumers' media viewing time, residence area, age, and gender. This study builds a recommender system using media & consumer research data provided by the Korea Broadcasting Advertising Promotion Corporation. Additionally, we evaluate the recommendation performance compared with several benchmark models. As a result of the experiment, we confirmed that the recommendation model reflecting the consumer's contextual information showed higher accuracy than the benchmark model. We expect to contribute to helping advertisers make effective decisions when selecting customized media based on various contextual information of consumers.

Multi-Object Goal Visual Navigation Based on Multimodal Context Fusion (멀티모달 맥락정보 융합에 기초한 다중 물체 목표 시각적 탐색 이동)

  • Jeong Hyun Choi;In Cheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.407-418
    • /
    • 2023
  • The Multi-Object Goal Visual Navigation(MultiOn) is a visual navigation task in which an agent must visit to multiple object goals in an unknown indoor environment in a given order. Existing models for the MultiOn task suffer from the limitation that they cannot utilize an integrated view of multimodal context because use only a unimodal context map. To overcome this limitation, in this paper, we propose a novel deep neural network-based agent model for MultiOn task. The proposed model, MCFMO, uses a multimodal context map, containing visual appearance features, semantic features of environmental objects, and goal object features. Moreover, the proposed model effectively fuses these three heterogeneous features into a global multimodal context map by using a point-wise convolutional neural network module. Lastly, the proposed model adopts an auxiliary task learning module to predict the observation status, goal direction and the goal distance, which can guide to learn the navigational policy efficiently. Conducting various quantitative and qualitative experiments using the Habitat-Matterport3D simulation environment and scene dataset, we demonstrate the superiority of the proposed model.

Preprocessing Technique for Malicious Comments Detection Considering the Form of Comments Used in the Online Community (온라인 커뮤니티에서 사용되는 댓글의 형태를 고려한 악플 탐지를 위한 전처리 기법)

  • Kim Hae Soo;Kim Mi Hui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.103-110
    • /
    • 2023
  • With the spread of the Internet, anonymous communities emerged along with the activation of communities for communication between people, and many users are doing harm to others, such as posting aggressive posts and leaving comments using anonymity. In the past, administrators directly checked posts and comments, then deleted and blocked them, but as the number of community users increased, they reached a level that managers could not continue to monitor. Initially, word filtering techniques were used to prevent malicious writing from being posted in a form that could not post or comment if a specific word was included, but they avoided filtering in a bypassed form, such as using similar words. As a way to solve this problem, deep learning was used to monitor posts posted by users in real-time, but recently, the community uses words that can only be understood by the community or from a human perspective, not from a general Korean word. There are various types and forms of characters, making it difficult to learn everything in the artificial intelligence model. Therefore, in this paper, we proposes a preprocessing technique in which each character of a sentence is imaged using a CNN model that learns the consonants, vowel and spacing images of Korean word and converts characters that can only be understood from a human perspective into characters predicted by the CNN model. As a result of the experiment, it was confirmed that the performance of the LSTM, BiLSTM and CNN-BiLSTM models increased by 3.2%, 3.3%, and 4.88%, respectively, through the proposed preprocessing technique.

A Study on the Development of Emotional Content through Natural Language Processing Deep Learning Model Emotion Analysis (자연어 처리 딥러닝 모델 감정분석을 통한 감성 콘텐츠 개발 연구)

  • Hyun-Soo Lee;Min-Ha Kim;Ji-won Seo;Jung-Yi Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.687-692
    • /
    • 2023
  • We analyze the accuracy of emotion analysis of natural language processing deep learning model and propose to use it for emotional content development. After looking at the outline of the GPT-3 model, about 6,000 pieces of dialogue data provided by Aihub were input to 9 emotion categories: 'joy', 'sadness', 'fear', 'anger', 'disgust', and 'surprise'. ', 'interest', 'boredom', and 'pain'. Performance evaluation was conducted using the evaluation indices of accuracy, precision, recall, and F1-score, which are evaluation methods for natural language processing models. As a result of the emotion analysis, the accuracy was over 91%, and in the case of precision, 'fear' and 'pain' showed low values. In the case of reproducibility, a low value was shown in negative emotions, and in the case of 'disgust' in particular, an error appeared due to the lack of data. In the case of previous studies, emotion analysis was mainly used only for polarity analysis divided into positive, negative, and neutral, and there was a limitation in that it was used only in the feedback stage due to its nature. We expand emotion analysis into 9 categories and suggest its use in the development of emotional content considering it from the planning stage. It is expected that more accurate results can be obtained if emotion analysis is performed by additionally collecting more diverse daily conversations through follow-up research.

Analysis of performance changes based on the characteristics of input image data in the deep learning-based algal detection model (딥러닝 기반 조류 탐지 모형의 입력 이미지 자료 특성에 따른 성능 변화 분석)

  • Juneoh Kim;Jiwon Baek;Jongrack Kim;Jungsu Park
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.267-273
    • /
    • 2023
  • Algae are an important component of the ecosystem. However, the excessive growth of cyanobacteria has various harmful effects on river environments, and diatoms affect the management of water supply processes. Algal monitoring is essential for sustainable and efficient algae management. In this study, an object detection model was developed that detects and classifies images of four types of harmful cyanobacteria used for the criteria of the algae alert system, and one diatom, Synedra sp.. You Only Look Once(YOLO) v8, the latest version of the YOLO model, was used for the development of the model. The mean average precision (mAP) of the base model was analyzed as 64.4. Five models were created to increase the diversity of the input images used for model training by performing rotation, magnification, and reduction of original images. Changes in model performance were compared according to the composition of the input images. As a result of the analysis, the model that applied rotation, magnification, and reduction showed the best performance with mAP 86.5. The mAP of the model that only used image rotation, combined rotation and magnification, and combined image rotation and reduction were analyzed as 85.3, 82.3, and 83.8, respectively.

Scaling Attack Method for Misalignment Error of Camera-LiDAR Calibration Model (카메라-라이다 융합 모델의 오류 유발을 위한 스케일링 공격 방법)

  • Yi-ji Im;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1099-1110
    • /
    • 2023
  • The recognition system of autonomous driving and robot navigation performs vision work such as object recognition, tracking, and lane detection after multi-sensor fusion to improve performance. Currently, research on a deep learning model based on the fusion of a camera and a lidar sensor is being actively conducted. However, deep learning models are vulnerable to adversarial attacks through modulation of input data. Attacks on the existing multi-sensor-based autonomous driving recognition system are focused on inducing obstacle detection by lowering the confidence score of the object recognition model.However, there is a limitation that an attack is possible only in the target model. In the case of attacks on the sensor fusion stage, errors in vision work after fusion can be cascaded, and this risk needs to be considered. In addition, an attack on LIDAR's point cloud data, which is difficult to judge visually, makes it difficult to determine whether it is an attack. In this study, image scaling-based camera-lidar We propose an attack method that reduces the accuracy of LCCNet, a fusion model (camera-LiDAR calibration model). The proposed method is to perform a scaling attack on the point of the input lidar. As a result of conducting an attack performance experiment by size with a scaling algorithm, an average of more than 77% of fusion errors were caused.

Applicability Evaluation of Deep Learning-Based Object Detection for Coastal Debris Monitoring: A Comparative Study of YOLOv8 and RT-DETR (해안쓰레기 탐지 및 모니터링에 대한 딥러닝 기반 객체 탐지 기술의 적용성 평가: YOLOv8과 RT-DETR을 중심으로)

  • Suho Bak;Heung-Min Kim;Youngmin Kim;Inji Lee;Miso Park;Seungyeol Oh;Tak-Young Kim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1195-1210
    • /
    • 2023
  • Coastal debris has emerged as a salient issue due to its adverse effects on coastal aesthetics, ecological systems, and human health. In pursuit of effective countermeasures, the present study delineated the construction of a specialized image dataset for coastal debris detection and embarked on a comparative analysis between two paramount real-time object detection algorithms, YOLOv8 and RT-DETR. Rigorous assessments of robustness under multifarious conditions were instituted, subjecting the models to assorted distortion paradigms. YOLOv8 manifested a detection accuracy with a mean Average Precision (mAP) value ranging from 0.927 to 0.945 and an operational speed between 65 and 135 Frames Per Second (FPS). Conversely, RT-DETR yielded an mAP value bracket of 0.917 to 0.918 with a detection velocity spanning 40 to 53 FPS. While RT-DETR exhibited enhanced robustness against color distortions, YOLOv8 surpassed resilience under other evaluative criteria. The implications derived from this investigation are poised to furnish pivotal directives for algorithmic selection in the practical deployment of marine debris monitoring systems.

Classification of Industrial Parks and Quarries Using U-Net from KOMPSAT-3/3A Imagery (KOMPSAT-3/3A 영상으로부터 U-Net을 이용한 산업단지와 채석장 분류)

  • Che-Won Park;Hyung-Sup Jung;Won-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1679-1692
    • /
    • 2023
  • South Korea is a country that emits a large amount of pollutants as a result of population growth and industrial development and is also severely affected by transboundary air pollution due to its geographical location. As pollutants from both domestic and foreign sources contribute to air pollution in Korea, the location of air pollutant emission sources is crucial for understanding the movement and distribution of pollutants in the atmosphere and establishing national-level air pollution management and response strategies. Based on this background, this study aims to effectively acquire spatial information on domestic and international air pollutant emission sources, which is essential for analyzing air pollution status, by utilizing high-resolution optical satellite images and deep learning-based image segmentation models. In particular, industrial parks and quarries, which have been evaluated as contributing significantly to transboundary air pollution, were selected as the main research subjects, and images of these areas from multi-purpose satellites 3 and 3A were collected, preprocessed, and converted into input and label data for model training. As a result of training the U-Net model using this data, the overall accuracy of 0.8484 and mean Intersection over Union (mIoU) of 0.6490 were achieved, and the predicted maps showed significant results in extracting object boundaries more accurately than the label data created by course annotations.