• Title/Summary/Keyword: deep learning framework

Search Result 240, Processing Time 0.027 seconds

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit (딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로)

  • Chung, Yeojin;Ahn, SungMahn;Yang, Jiheon;Lee, Jaejoon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.1-17
    • /
    • 2017
  • The deep learning framework is software designed to help develop deep learning models. Some of its important functions include "automatic differentiation" and "utilization of GPU". The list of popular deep learning framework includes Caffe (BVLC) and Theano (University of Montreal). And recently, Microsoft's deep learning framework, Microsoft Cognitive Toolkit, was released as open-source license, following Google's Tensorflow a year earlier. The early deep learning frameworks have been developed mainly for research at universities. Beginning with the inception of Tensorflow, however, it seems that companies such as Microsoft and Facebook have started to join the competition of framework development. Given the trend, Google and other companies are expected to continue investing in the deep learning framework to bring forward the initiative in the artificial intelligence business. From this point of view, we think it is a good time to compare some of deep learning frameworks. So we compare three deep learning frameworks which can be used as a Python library. Those are Google's Tensorflow, Microsoft's CNTK, and Theano which is sort of a predecessor of the preceding two. The most common and important function of deep learning frameworks is the ability to perform automatic differentiation. Basically all the mathematical expressions of deep learning models can be represented as computational graphs, which consist of nodes and edges. Partial derivatives on each edge of a computational graph can then be obtained. With the partial derivatives, we can let software compute differentiation of any node with respect to any variable by utilizing chain rule of Calculus. First of all, the convenience of coding is in the order of CNTK, Tensorflow, and Theano. The criterion is simply based on the lengths of the codes and the learning curve and the ease of coding are not the main concern. According to the criteria, Theano was the most difficult to implement with, and CNTK and Tensorflow were somewhat easier. With Tensorflow, we need to define weight variables and biases explicitly. The reason that CNTK and Tensorflow are easier to implement with is that those frameworks provide us with more abstraction than Theano. We, however, need to mention that low-level coding is not always bad. It gives us flexibility of coding. With the low-level coding such as in Theano, we can implement and test any new deep learning models or any new search methods that we can think of. The assessment of the execution speed of each framework is that there is not meaningful difference. According to the experiment, execution speeds of Theano and Tensorflow are very similar, although the experiment was limited to a CNN model. In the case of CNTK, the experimental environment was not maintained as the same. The code written in CNTK has to be run in PC environment without GPU where codes execute as much as 50 times slower than with GPU. But we concluded that the difference of execution speed was within the range of variation caused by the different hardware setup. In this study, we compared three types of deep learning framework: Theano, Tensorflow, and CNTK. According to Wikipedia, there are 12 available deep learning frameworks. And 15 different attributes differentiate each framework. Some of the important attributes would include interface language (Python, C ++, Java, etc.) and the availability of libraries on various deep learning models such as CNN, RNN, DBN, and etc. And if a user implements a large scale deep learning model, it will also be important to support multiple GPU or multiple servers. Also, if you are learning the deep learning model, it would also be important if there are enough examples and references.

CNN model transition learning comparative analysis based on deep learning for image classification (이미지 분류를 위한 딥러닝 기반 CNN모델 전이 학습 비교 분석)

  • Lee, Dong-jun;Jeon, Seung-Je;Lee, DongHwi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.370-373
    • /
    • 2022
  • Recently, various deep learning framework models such as Tensorflow, Pytorch, Keras, etc. have appeared. In addition, CNN (Convolutional Neural Network) is applied to image recognition using frameworks such as Tensorflow, Pytorch, and Keras, and the optimization model in image classification is mainly used. In this paper, based on the results of training the CNN model with the Paitotchi and tensor flow frameworks most often used in the field of deep learning image recognition, the two frameworks are compared and analyzed for image analysis. Derived an optimized framework.

  • PDF

A Comparative Analysis of Deep Learning Frameworks for Image Learning (이미지 학습을 위한 딥러닝 프레임워크 비교분석)

  • jong-min Kim;Dong-Hwi Lee
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.129-133
    • /
    • 2022
  • Deep learning frameworks are still evolving, and there are various frameworks. Typical deep learning frameworks include TensorFlow, PyTorch, and Keras. The Deepram framework utilizes optimization models in image classification through image learning. In this paper, we use the TensorFlow and PyTorch frameworks, which are most widely used in the deep learning image recognition field, to proceed with image learning, and compare and analyze the results derived in this process to know the optimized framework. was made.

Research on Forecasting Framework for System Marginal Price based on Deep Recurrent Neural Networks and Statistical Analysis Models

  • Kim, Taehyun;Lee, Yoonjae;Hwangbo, Soonho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.

Tissue Level Based Deep Learning Framework for Early Detection of Dysplasia in Oral Squamous Epithelium

  • Gupta, Rachit Kumar;Kaur, Mandeep;Manhas, Jatinder
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.81-86
    • /
    • 2019
  • Deep learning is emerging as one of the best tool in processing data related to medical imaging. In our research work, we have proposed a deep learning based framework CNN (Convolutional Neural Network) for the classification of dysplastic tissue images. The CNN has classified the given images into 4 different classes namely normal tissue, mild dysplastic tissue, moderate dysplastic tissue and severe dysplastic tissue. The dataset under taken for the study consists of 672 tissue images of epithelial squamous layer of oral cavity captured out of the biopsy samples of 52 patients. After applying the data pre-processing and augmentation on the given dataset, 2688 images were created. Further, these 2688 images were classified into 4 categories with the help of expert Oral Pathologist. The classified data was supplied to the convolutional neural network for training and testing of the proposed framework. It has been observed that training data shows 91.65% accuracy whereas the testing data achieves 89.3% accuracy. The results produced by our proposed framework are also tested and validated by comparing the manual results produced by the medical experts working in this area.

DEMO: Deep MR Parametric Mapping with Unsupervised Multi-Tasking Framework

  • Cheng, Jing;Liu, Yuanyuan;Zhu, Yanjie;Liang, Dong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.300-312
    • /
    • 2021
  • Compressed sensing (CS) has been investigated in magnetic resonance (MR) parametric mapping to reduce scan time. However, the relatively long reconstruction time restricts its widespread applications in the clinic. Recently, deep learning-based methods have shown great potential in accelerating reconstruction time and improving imaging quality in fast MR imaging, although their adaptation to parametric mapping is still in an early stage. In this paper, we proposed a novel deep learning-based framework DEMO for fast and robust MR parametric mapping. Different from current deep learning-based methods, DEMO trains the network in an unsupervised way, which is more practical given that it is difficult to acquire large fully sampled training data of parametric-weighted images. Specifically, a CS-based loss function is used in DEMO to avoid the necessity of using fully sampled k-space data as the label, thus making it an unsupervised learning approach. DEMO reconstructs parametric weighted images and generates a parametric map simultaneously by unrolling an interaction approach in conventional fast MR parametric mapping, which enables multi-tasking learning. Experimental results showed promising performance of the proposed DEMO framework in quantitative MR T1ρ mapping.

Deep learning framework for bovine iris segmentation

  • Heemoon Yoon;Mira Park;Hayoung Lee;Jisoon An;Taehyun Lee;Sang-Hee Lee
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.167-177
    • /
    • 2024
  • Iris segmentation is an initial step for identifying the biometrics of animals when establishing a traceability system for livestock. In this study, we propose a deep learning framework for pixel-wise segmentation of bovine iris with a minimized use of annotation labels utilizing the BovineAAEyes80 public dataset. The proposed image segmentation framework encompasses data collection, data preparation, data augmentation selection, training of 15 deep neural network (DNN) models with varying encoder backbones and segmentation decoder DNNs, and evaluation of the models using multiple metrics and graphical segmentation results. This framework aims to provide comprehensive and in-depth information on each model's training and testing outcomes to optimize bovine iris segmentation performance. In the experiment, U-Net with a VGG16 backbone was identified as the optimal combination of encoder and decoder models for the dataset, achieving an accuracy and dice coefficient score of 99.50% and 98.35%, respectively. Notably, the selected model accurately segmented even corrupted images without proper annotation data. This study contributes to the advancement of iris segmentation and the establishment of a reliable DNN training framework.

Deep Neural Network(DNN) based Clinic Decision Support System(CDSS) Framework (Deep Neural Network(DNN) 기반 Clinic Decision Support System(CDSS) Framework)

  • Yu, Hyerin;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.357-358
    • /
    • 2022
  • 이 논문은 Deep Learning 을 이용해 의사의 진단의 도움을 줄 수 있는 Clinic Decision Support System(CDSS) Framework 를 제안한다. 당뇨병, 고혈압, 고지혈증 같은 대사질환은 증상이 있는 경우도 있지만 없는 경우가 대부분이다.[1] 그렇기 때문에 원격으로 진료할 경우 대사질환에 대한 부분을 놓칠 수 있다. 이러한 부분을 챗봇이 의사에게 Deep Neural Network(DNN)으로 예측된 정보를 제공해 도움을 준다.

Optimal deep machine learning framework for vibration mitigation of seismically-excited uncertain building structures

  • Afshin Bahrami Rad;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.535-549
    • /
    • 2023
  • Deep extreme learning machine (DELM) and multi-verse optimization algorithms (MVO) are hybridized for designing an optimal and adaptive control framework for uncertain buildings. In this approach, first, a robust model predictive control (RMPC) scheme is developed to handle the problem uncertainty. The optimality and adaptivity of the proposed controller are provided by the optimal determination of the tunning weights of the linear programming (LP) cost function for clustered external loads using the MVO. The final control policy is achieved by collecting the clustered data and training them by DELM. The efficiency of the introduced control scheme is demonstrated by the numerical simulation of a ten-story benchmark building subjected to earthquake excitations. The results represent the capability of the proposed framework compared to robust MPC (RMPC), conventional MPC (CMPC), and conventional DELM algorithms in structural motion control.