In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction.
This research aimed to assess the possibility of detecting forest degradation using time-series satellite imagery and three different deep learning-based change detection techniques. The dataset used for the deep learning models was composed of two sets, one based on surface reflectance (SR) spectral information from satellite imagery, combined with Texture Information (GLCM; Gray-Level Co-occurrence Matrix) and terrain information. The deep learning models employed for land cover change detection included image differencing using the Unet semantic segmentation model, multi-encoder Unet model, and multi-encoder Unet++ model. The study found that there was no significant difference in accuracy between the deep learning models for forest degradation detection. Both training and validation accuracies were approx-imately 89% and 92%, respectively. Among the three deep learning models, the multi-encoder Unet model showed the most efficient analysis time and comparable accuracy. Moreover, models that incorporated both texture and gradient information in addition to spectral information were found to have a higher classification accuracy compared to models that used only spectral information. Overall, the accuracy of forest degradation extraction was outstanding, achieving 98%.
International journal of advanced smart convergence
/
제12권4호
/
pp.142-146
/
2023
We present a method for generating 3D structures and rendering objects by combining VAE (Variational Autoencoder) and GAN (Generative Adversarial Network). This approach focuses on generating and rendering 3D models with improved quality using residual learning as the learning method for the encoder. We deep stack the encoder layers to accurately reflect the features of the image and apply residual blocks to solve the problems of deep layers to improve the encoder performance. This solves the problems of gradient vanishing and exploding, which are problems when constructing a deep neural network, and creates a 3D model of improved quality. To accurately extract image features, we construct deep layers of the encoder model and apply the residual function to learning to model with more detailed information. The generated model has more detailed voxels for more accurate representation, is rendered by adding materials and lighting, and is finally converted into a mesh model. 3D models have excellent visual quality and accuracy, making them useful in various fields such as virtual reality, game development, and metaverse.
Music brings pleasure and relaxation to people. Therefore, it is necessary to classify musical genres based on scenes. Identifying favorite musical genres from massive music data is a time-consuming and laborious task. Recent studies have suggested that machine learning algorithms are effective in distinguishing between various musical genres. However, meeting the actual requirements in terms of accuracy or timeliness is challenging. In this study, a hybrid machine learning model that combines a deep residual auto-encoder (DRAE) and support vector machine (SVM) for musical genre recognition was proposed. Eight manually extracted features from the Mel-frequency cepstral coefficients (MFCC) were employed in the preprocessing stage as the hybrid music data source. During the training stage, DRAE was employed to extract feature maps, which were then used as input for the SVM classifier. The experimental results indicated that this method achieved a 91.54% F1-score and 91.58% top-1 accuracy, outperforming existing approaches. This novel approach leverages deep architecture and conventional machine learning algorithms and provides a new horizon for musical genre classification tasks.
Clustering is one of the most fundamental algorithms in machine learning. The performance of clustering is affected by the distribution of data, and when there are more data or more dimensions, the performance is degraded. For this reason, we use a stacked auto encoder, one of the deep learning algorithms, to reduce the dimension of data which generate a feature vector that best represents the input data. We use k-means, which is a famous algorithm, as a clustering. Sine the feature vector which reduced dimensions are also multi dimensional, we use the Euclidean distance as well as the cosine similarity to increase the performance which calculating the similarity between the center of the cluster and the data as a vector. A deep clustering networks combining a stacked auto encoder and k-means re-trains the networks when the k-means result changes. When re-training the networks, the loss function of the stacked auto encoder and the loss function of the k-means are combined to improve the performance and the stability of the network. Experiments of benchmark image ad document dataset empirically validated the power of the proposed algorithm.
본 논문에서는 베어링의 결함 진단을 위한 단일 클래스 분류의 진동 이상 탐지 시스템을 제안한다. 베어링 고장으로 인해 발생하는 경제적 및 시간적 손실을 줄이기 위해 정확한 결함 진단시스템은 필수적이며 문제 해결을 위해 딥러닝 기반의 결함 진단 시스템들이 널리 연구되고 있다. 그러나 딥러닝 학습을 위한 실제 데이터 채집 환경에서 비정상 데이터 확보에 어려움이 있으며 이는 데이터 편향을 초래한다. 이에 정상 데이터만 활용하는 단일 클래스 분류 방법을 활용한다. 일반적인 방법으로는 AutoEncoder를 통한 압축과 복원 과정을 학습하여 진동 데이터의 특성을 추출한다. 추출된 특성으로 단일 클래스 분류기를 학습하여 이상 탐지를 실시한다. 하지만 이와 같은 방법은 진동 데이터의 주파수 특성을 고려하지 않아서 진동 데이터의 특성을 효율적 추출할 수 없다. 이러한 문제를 해결하기 위해 진동 데이터의 주파수 특성을 고려한 AutoEncoder 모델을 제안한다. 분류 성능은 accuracy 0.910, precision 1.0, recall 0.820, f1-score 0.901이 나왔다. 주파수 특성을 고려한 네트워크 설계로 기존 방법들보다 우수한 성능을 확인하였다.
최근 감정 분류 분야에서 딥러닝 인코더 기반의 접근 방법이 활발히 적용되고 있다. 딥러닝 인코더 기반의 접근 방법은 가변 길이 문장을 고정 길이 문서 벡터로 압축하여 표현한다. 하지만 딥러닝 인코더에 흔히 사용되는 구조인 장 단기 기억망(Long Short-Term Memory network) 딥러닝 인코더는 문서가 길어지는 경우, 문서 벡터 표현의 품질이 저하된다고 알려져 있다. 본 논문에서는 효과적인 감정 문서의 분류를 위해, 장 단기 기억망의 출력을 중요도에 따라 가중합하여 문서 벡터 표현을 생성하는 주목방법 기반의 딥러닝 인코더를 사용하는 것을 제안한다. 또한, 주목 방법 기반의 딥러닝 인코더를 문서의 감정 분류 영역에 맞게 수정하는 방법을 제안한다. 제안하는 방법은 윈도우 주목 방법(Window Attention Method)을 적용한 단계와 주목 가중치 재조정(Weight Adjustment) 단계로 구성된다. 윈도우 주목 방법은 한 단어 이상으로 구성된 감정 자질을 효과적으로 인식하기 위해, 윈도우 단위로 가중치를 학습한다. 주목 가중치 재조정에서는 학습된 가중치를 평활화(Smoothing) 한다, 실험 결과, 본 논문에서 제안하는 방법은 정확도 기준으로 89.67%의 성능을 나타내어 장 단기 기억망 인코더보다 높은 성능을 보였다.
In this study, we present a sewer pipe inspection technique through a combination of active sonar technology and deep learning algorithms. It is difficult to inspect pipes containing water using conventional CCTV inspection methods, and there are various limitations, so a new approach is needed. In this paper, we introduce a inspection method using active sonar, and apply an auto encoder deep learning model to process sonar data to distinguish between normal and abnormal pipelines. This model underwent training on sonar data from a controlled environment under the assumption of normal pipeline conditions and utilized anomaly detection techniques to identify deviations from established standards. This approach presents a new perspective in pipeline inspection, promising to reduce the time and resources required for sewer system management and to enhance the reliability of pipeline inspections.
본 논문에서는 U-Net 기반의 semantic segmentation 방법에서 정확도를 향상시키기 위해 residual learning을 활용한 인코더-디코더 구조의 모델을 제안하였다. U-Net은 딥러닝 기반의 semantic segmentation 방법이며 자율주행 자동차, 의료 영상 분석과 같은 응용 분야에서 주로 사용된다. 기존 U-Net은 인코더의 얕은 구조로 인해 특징 압축 과정에서 손실이 발생한다. 특징 손실은 객체의 클래스 분류에 필요한 context 정보 부족을 초래하고 segmentation 정확도를 감소시키는 문제가 있다. 이를 개선하기 위해 제안하는 방법은 기존 U-Net에 특징 손실과 기울기 소실 문제를 방지하는데 효과적인 residual learning을 활용한 인코더를 통해 context 정보를 효율적으로 추출하였다. 또한, 인코더에서 down-sampling 연산을 줄여 특징맵에 포함된 공간 정보의 손실을 개선하였다. 제안하는 방법은 Cityscapes 데이터셋 실험에서 기존 U-Net 방법에 비해 segmentation 결과가 약 12% 향상되었다.
Visual place recognition is widely researched area in robotics, as it is one of the elemental requirements for autonomous navigation, simultaneous localization and mapping for mobile robots. However, place recognition in changing environment is a challenging problem since a same place look different according to the time, weather, and seasons. This paper presents a feature extraction method using a deep convolutional auto-encoder to recognize places under severe appearance changes. Given database and query image sequences from different environments, the convolutional auto-encoder is trained to predict the images of the desired environment. The training process is performed by minimizing the loss function between the predicted image and the desired image. After finishing the training process, the encoding part of the structure transforms an input image to a low dimensional latent representation, and it can be used as a condition-invariant feature for recognizing places in changing environment. Experiments were conducted to prove the effective of the proposed method, and the results showed that our method outperformed than existing methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.