• Title/Summary/Keyword: deep learning application

Search Result 583, Processing Time 0.023 seconds

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.

Digital Twin and Visual Object Tracking using Deep Reinforcement Learning (심층 강화학습을 이용한 디지털트윈 및 시각적 객체 추적)

  • Park, Jin Hyeok;Farkhodov, Khurshedjon;Choi, Piljoo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.145-156
    • /
    • 2022
  • Nowadays, the complexity of object tracking models among hardware applications has become a more in-demand duty to complete in various indeterminable environment tracking situations with multifunctional algorithm skills. In this paper, we propose a virtual city environment using AirSim (Aerial Informatics and Robotics Simulation - AirSim, CityEnvironment) and use the DQN (Deep Q-Learning) model of deep reinforcement learning model in the virtual environment. The proposed object tracking DQN network observes the environment using a deep reinforcement learning model that receives continuous images taken by a virtual environment simulation system as input to control the operation of a virtual drone. The deep reinforcement learning model is pre-trained using various existing continuous image sets. Since the existing various continuous image sets are image data of real environments and objects, it is implemented in 3D to track virtual environments and moving objects in them.

Recent advances in deep learning-based side-channel analysis

  • Jin, Sunghyun;Kim, Suhri;Kim, HeeSeok;Hong, Seokhie
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.292-304
    • /
    • 2020
  • As side-channel analysis and machine learning algorithms share the same objective of classifying data, numerous studies have been proposed for adapting machine learning to side-channel analysis. However, a drawback of machine learning algorithms is that their performance depends on human engineering. Therefore, recent studies in the field focus on exploiting deep learning algorithms, which can extract features automatically from data. In this study, we survey recent advances in deep learning-based side-channel analysis. In particular, we outline how deep learning is applied to side-channel analysis, based on deep learning architectures and application methods. Furthermore, we describe its properties when using different architectures and application methods. Finally, we discuss our perspective on future research directions in this field.

Optimization of Cyber-Attack Detection Using the Deep Learning Network

  • Duong, Lai Van
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.159-168
    • /
    • 2021
  • Detecting cyber-attacks using machine learning or deep learning is being studied and applied widely in network intrusion detection systems. We noticed that the application of deep learning algorithms yielded many good results. However, because each deep learning model has different architecture and characteristics with certain advantages and disadvantages, so those deep learning models are only suitable for specific datasets or features. In this paper, in order to optimize the process of detecting cyber-attacks, we propose the idea of building a new deep learning network model based on the association and combination of individual deep learning models. In particular, based on the architecture of 2 deep learning models: Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM), we combine them into a combined deep learning network for detecting cyber-attacks based on network traffic. The experimental results in Section IV.D have demonstrated that our proposal using the CNN-LSTM deep learning model for detecting cyber-attacks based on network traffic is completely correct because the results of this model are much better than some individual deep learning models on all measures.

Design of Falling Recognition Application System using Deep Learning

  • Kwon, TaeWoo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.120-126
    • /
    • 2020
  • Studies are being conducted regarding falling recognition using sensors on smartphonesto recognize falling in human daily life. These studies use a number of sensors, mostly acceleration sensors, gyro sensors, motion sensors, etc. Falling recognition system processes the values of sensor data by using a falling recognition algorithm and classifies behavior based on thresholds. If the threshold is ambiguous, the accuracy will be reduced. To solve this problem, Deep learning was introduced in the behavioral recognition system. Deep learning is a kind of machine learning technique that computers process and categorize input data rather than processing it by man-made algorithms. Thus, in this paper, we propose a falling recognition application system using deep learning based on smartphones. The proposed system is powered by apps on smartphones. It also consists of three layers and uses DataBase as a Service (DBaaS) to handle big data and address data heterogeneity. The proposed system uses deep learning to recognize the user's behavior, it can expect higher accuracy compared to the system in the general rule base.

A TabNet - Based System for Water Quality Prediction in Aquaculture

  • Nguyen, Trong–Nghia;Kim, Soo Hyung;Do, Nhu-Tai;Hong, Thai-Thi Ngoc;Yang, Hyung Jeong;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.39-52
    • /
    • 2022
  • In the context of the evolution of automation and intelligence, deep learning and machine learning algorithms have been widely applied in aquaculture in recent years, providing new opportunities for the digital realization of aquaculture. Especially, water quality management deserves attention thanks to its importance to food organisms. In this study, we proposed an end-to-end deep learning-based TabNet model for water quality prediction. From major indexes of water quality assessment, we applied novel deep learning techniques and machine learning algorithms in innovative fish aquaculture to predict the number of water cells counting. Furthermore, the application of deep learning in aquaculture is outlined, and the obtained results are analyzed. The experiment on in-house data showed an optimistic impact on the application of artificial intelligence in aquaculture, helping to reduce costs and time and increase efficiency in the farming process.

Bio-Cell Image Segmentation based on Deep Learning using Denoising Autoencoder and Graph Cuts (디노이징 오토인코더와 그래프 컷을 이용한 딥러닝 기반 바이오-셀 영상 분할)

  • Lim, Seon-Ja;Vununu, Caleb;Kwon, Oh-Heum;Lee, Suk-Hwan;Kwon, Ki-Ryoug
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1326-1335
    • /
    • 2021
  • As part of the cell division method, we proposed a method for segmenting images generated by topography microscopes through deep learning-based feature generation and graph segmentation. Hybrid vector shapes preserve the overall shape and boundary information of cells, so most cell shapes can be captured without any post-processing burden. NIH-3T3 and Hela-S3 cells have satisfactory results in cell description preservation. Compared to other deep learning methods, the proposed cell image segmentation method does not require postprocessing. It is also effective in preserving the overall morphology of cells and has shown better results in terms of cell boundary preservation.

Developing and Evaluating Deep Learning Algorithms for Object Detection: Key Points for Achieving Superior Model Performance

  • Jang-Hoon Oh;Hyug-Gi Kim;Kyung Mi Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.698-714
    • /
    • 2023
  • In recent years, artificial intelligence, especially object detection-based deep learning in computer vision, has made significant advancements, driven by the development of computing power and the widespread use of graphic processor units. Object detection-based deep learning techniques have been applied in various fields, including the medical imaging domain, where remarkable achievements have been reported in disease detection. However, the application of deep learning does not always guarantee satisfactory performance, and researchers have been employing trial-and-error to identify the factors contributing to performance degradation and enhance their models. Moreover, due to the black-box problem, the intermediate processes of a deep learning network cannot be comprehended by humans; as a result, identifying problems in a deep learning model that exhibits poor performance can be challenging. This article highlights potential issues that may cause performance degradation at each deep learning step in the medical imaging domain and discusses factors that must be considered to improve the performance of deep learning models. Researchers who wish to begin deep learning research can reduce the required amount of trial-and-error by understanding the issues discussed in this study.

Development of deep learning-based rock classifier for elementary, middle and high school education (초중고 교육을 위한 딥러닝 기반 암석 분류기 개발)

  • Park, Jina;Yong, Hwan-Seung
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • These days, as Interest in Image recognition with deep learning is increasing, there has been a lot of research in image recognition using deep learning. In this study, we propose a system for classifying rocks through rock images of 18 types of rock(6 types of igneous, 6 types of metamorphic, 6 types of sedimentary rock) which are addressed in the high school curriculum, using CNN model based on Tensorflow, deep learning open source framework. As a result, we developed a classifier to distinguish rocks by learning the images of rocks and confirmed the classification performance of rock classifier. Finally, through the mobile application implemented, students can use the application as a learning tool in classroom or on-site experience.

Improved Deep Q-Network Algorithm Using Self-Imitation Learning (Self-Imitation Learning을 이용한 개선된 Deep Q-Network 알고리즘)

  • Sunwoo, Yung-Min;Lee, Won-Chang
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.644-649
    • /
    • 2021
  • Self-Imitation Learning is a simple off-policy actor-critic algorithm that makes an agent find an optimal policy by using past good experiences. In case that Self-Imitation Learning is combined with reinforcement learning algorithms that have actor-critic architecture, it shows performance improvement in various game environments. However, its applications are limited to reinforcement learning algorithms that have actor-critic architecture. In this paper, we propose a method of applying Self-Imitation Learning to Deep Q-Network which is a value-based deep reinforcement learning algorithm and train it in various game environments. We also show that Self-Imitation Learning can be applied to Deep Q-Network to improve the performance of Deep Q-Network by comparing the proposed algorithm and ordinary Deep Q-Network training results.