• Title/Summary/Keyword: deep groove ball bearing

Search Result 21, Processing Time 0.022 seconds

Genetic Algorithm Based Design of Beep Groove Ball Bearing for High-Load Capacity (유전자 알고리즘을 이용한 깊은 홈 볼 베어링의 고부하용량 설계)

  • 윤기찬;조영석;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.167-173
    • /
    • 1999
  • This paper suggests a method to design the deep groove ball bearing for high-load capacity by using a genetic algorithm. The design problem of ball bearings is a typical discrete/continuous optimization problem because the deep groove ball bearing has discrete variables, such as ball size and number of balls. Thus, a genetic algorithm is employed to find the optimum values from a set of discrete design variables. The ranking process is proposed to effectively deal with the constraints in genetic algorithm. Results obtained fer several 63 series deep groove ball bearings demonstrated the effectiveness of the proposed design methodology by showing that the average basic dynamic capacities of optimally designed bearings increase about 9~34% compared with the standard ones.

  • PDF

Analysis of Fluid Flow Characteristics Around Rolling Element in Ball Bearings (볼 베어링의 구름 요소 주위 유동 특성에 대한 해석)

  • Jo, Jun Hyeon;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.278-282
    • /
    • 2012
  • Various bearings such as deep-groove ball bearings, angular-contact ball bearings, and roller bearings are used to support the load and to lubricate between the shaft and the housing. The bearings of potential rolling systems in a turbo pump are the deep-groove ball bearings as comparing with the bearings with rolling elements such as cylindrical rollers, tapered cylindrical rollers, and needle rollers. The deep-groove ball bearings consist of rolling elements, an inner raceway, an outer raceway and a retainer that maintain separation and help to lubricate the rolling element that is rotating in the raceways. In the case of water-lubricated ball bearings, however, fluid friction between the ball and raceways is affected by the entry direction of flow, rotation speed, and flow rate. In addition, this friction is the key factor affecting the bearing life cycles and reliability. In this paper, the characteristics of flow conditions corresponding to a deep-groove ball bearing are investigated numerically, with particular focus on the friction distribution on the rolling element, in order to extend the analysis to the area that experiences solid friction. A simple analysis model of fluid flow inside the water-lubricated ball bearing is analyzed with CFD, and the flow characteristics at high rotation speeds are presented.

Prediction of the Fatigue Life of Deep Groove Ball Bearing under Radial and Moment Loads -Equivalent Dynamic Loads- (반경방향과 모멘트하중 하에서의 깊은홈 볼베어링의 피로수명 평가 -동등가하중식 제안-)

  • 김완두;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1654-1663
    • /
    • 1994
  • Even if the ball bearing was conservatively designed considering the dynamic capacity and the rating life, sometimes the bearing was early failed on account of the misalignment and the lubricant contaminations etc. Misalignment was generated when bearing-shaft system transmitted large power and when the bearing was inadequately mounted. It was possible to predict the fatigue life of ball bearing under the misalignment considering the motions of ball, cage and raceway, and the factors of the effect on fatigue life. Misalignment affected on ball bearing as radial and moment load and the relationships between misalignment and moment were obtained. In this paper, the analysis of the load distributions between ball and raceway, and the prediction of fatigue life of deep groove ball bearing under radial and moment loads were carried out. And, the new formulation of equivalent dynamic load considering the effects of moment load was proposed.

Design Optimization of Deep Groove Ball Bearing with Discrete Variables for High-Load Capacity (이산 설계변수를 포함하고 있는 깊은 홈 볼 베어링의 고부하용량 설계)

  • Yun, Gi-Chan;Jo, Yeong-Seok;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1940-1948
    • /
    • 2000
  • A design method for maximizing fatigue life of the deep groove ball bearing without enlarging mounting space is proposed by using a genetic algorithm. The use of gradient-based optimization methods for the design of the bearing is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. Constrains for manufacturing are applied in optimization scheme. Results obtained for several 63 series deep groove ball bearings demonstrated the effectiveness of the proposed design methodology by showing that the average basic dynamic capacities of optimally designed bearings increased about 9-34% compared with the standard ones.

Dynamic Model to Predict Effect of Race Waviness on Vibrations Associated with Deep-Groove Ball Bearing

  • Hwang, Pyung;Nguyen, Van Trang
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.64-70
    • /
    • 2014
  • This paper presents a numerical model for investigating the structural dynamics response of a rigid rotor supported on deep-groove ball bearings. The numerical model was used to investigate the influence of race waviness on the dynamic characteristics of a rotor ball bearing system, which is very important from a design viewpoint. The forth-order Runge-Kutta numerical integration technique was applied to determine the time displacement response, Poincare map, and frequency spectra. The analysis demonstrated that the model can be used as a tool for predicting the nonlinear dynamic behavior of a rotor ball bearing system under different operating conditions. The results of this study may help further understanding of the nonlinear dynamics of a rotor bearing system.

Design Characteristics for Water Lubricated Ball Bearing Retainer (수윤활 볼베어링의 리테이너 설계 특성)

  • Lee Jae-Seon;Choi Suhn;Kim Ji-Ho;Park Keun-Bae;Zee Sung-Quun
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.278-282
    • /
    • 2005
  • Deep groove ball bearing is installed in a control element of an integral nuclear reactor, where water is used as coolant and lubricant. This bearing is made of STS440C stainless steel for the raceways and the balls to use in radioactive environment and water. It is known that the retainer design affects ball bearing operability and endurance life, however there is no verified retainer design and material for water lubricated ball bearing. Four kinds of retainers are manufactured for the endurance test of water lubricated deep groove ball bearing. Three of them are commercially developed types and the other is designed for this research. It is verified that ball bearings with steel pressed and general plastic retainer can not survive to required life in the water, however bearings with machined type and cylinder type retainer can survive. This proves that one of the major design parameters for water lubricated ball bearing is retainer type and material. In this paper, experimental research of endurance test for water-lubricated ball bearing are reported.

Ball-Bearing Selection Considering Flexibility of Shaft-Bearing System (축-베어링 시스템의 연성 특성을 고려한 볼 베어링의 선정)

  • 윤기찬;최동훈
    • Tribology and Lubricants
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2000
  • In this paper, the effects of shaft and bearing flexibilities are investigated for the accurate modeling of a shaft-bearing system supported by ball bearings. Generally, rolling bearings are modeled by simple rigid pin-joint in the mechanical design. However, they can no longer be modeled by ideal boundary conditions in the advanced applications because the rigid pin-joint model cannot satisfy the current trends of mechanical design decreasing mass and reducing volume. Consequently the flexible support model of ball bearing is investigated using the static analysis module developed by A .B. Jones and T. A. Harris. A simple two-bearing system, supported by two deep groove ball bearings and radially loaded on the shaft midway between the bearings, is utilized to validate the coupled model of shaft-bearing system. Numerical computations using the model indicate that the shaft span length, locating/floating bearing arrangements and applied bearing size are significant factors in determining the mechanical behaviors. The flexible support model of ball bearing can be escaped to over-estimate in the bearing fatigue life. The proposed simple design formulation obtained by numerical simulations can approximately predict a rate of bearing life reduction as a function of shaft span length/shaft diameter (L/d).

The Static Equivalent Radial Load under the Moment and Radial Force for the Deep Groove Ball Bearings (모멘트 하중을 고려한 깊은 홈 볼 베어링의 정등가 하중에 관한 연구)

  • 이재선;한동철
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.94-99
    • /
    • 1998
  • Generally not only the radial load but also the moment may be applied to the ball bearings for a shaft system. However it has been difficult to determine the static equivalent load because there is the radial static equivalent equation only for the axial and radial force on the bearings. In this paper, the same static equivalent radial load which makes the maximum contact force at the interface between the ball and groove as the applied radial force and moment generate is calculated under the condition that the radial force and the moment are applied to the bearings simultaneously. The relation between the static equivalent load and applied force is studied. Therefore the simple and effective equation for the static equivalent radial load of the radial load and moment is proposed for the deep groove ball bearings.

Development of Cryogenic Bearing&Seal&Material Test Facility for High Pressure Turbopump (고압터보펌프용 극저온 베어링&실&재료 시험 설비 개발)

  • Yang, Hong-Jun;Kim, Seon-Yong;Chin, Hyung-Seok;Woo, Kwan-Je
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.347-351
    • /
    • 2004
  • The cryogenic test facility is developed for test of deep groove ball bearings, floating ring seals, materials (steel & copper) for High Pressure Turbopump of liquid rocket engine (LRE). The cryogenic bearing test is performed to evaluate the flow rate of cooling water and the load-carrying capacity of bearings. The cryogenic seal test is performed to evaluate the determination of magnitude of leakages through the seal, a time variation of this magnitude. The test of the materials Pair is performed to evaluate its fitness for operation in the liquid oxygen medium.

  • PDF

A Study on the Characteristics of Ceramic Ball Bearing (세라믹 볼베어링의 특성해석에 관한 연구)

  • 김완두;한동철
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.64-72
    • /
    • 1992
  • The recent trends of rotating machinery demand high speed and high temperature operation, and the bearing with new material is required to be developed. Ceramic, especially silicon nitride, have been receiving attention as alternative material to conventional bearing steel. Ceramic ball bearing offers major performance advantages over steel bearing, for instance, high speed, maginal lubrication, high temperature, improved corrosion resistance and nonmagnetic capabilities etc.. In this paper, the mechanical characteristics of ceramic ball bearing (hybrid ceramic bearing and all ceramic bearing) were investigated, and the characteristics of ceramic bearing were compared with that of steel bearing. Deep groove ball bearing 6208 was taken the object of analysis. The main results of analysis were followings: the radial stiffness of hybrid and all ceramic bearing were 112% and 130% that of steel bearing, and the axial stiffness of all ceramic bearing was 110% that of steel bearing. According as rotating speed was up, the ball load, the contact angle, the contact stress and the spin-to-roll ratio between ball and raceway of ceramic bearing were far smaller than these of steel bearing. And there was not a significant difference between the minimum film thickness of ceramic bearing and steel bearing. It is expected that this research is contributed to enhanced fundamental technology for the practical applications of ceramic ball bearing.