• Title/Summary/Keyword: deep geological disposal

Search Result 140, Processing Time 0.023 seconds

Emplacement Process of the HLW in the Deep Geological Repository (지하처분장에서의 고준위폐기물 처분공정 개념)

  • 이종열;김성기;조동건;최희주;최종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1013-1016
    • /
    • 2004
  • High level radioactive wastes, such as spent fuels generated from nuclear power plant, will be disposed in a deep geological repository. To maintain the integrity of the disposal canister and to carry out the process effectively, the emplacement process for the canister system in borehole of disposal tunnel should be well defined. In this study, the concept of the disposal canister emplacement process for deep geological disposal was established. To do this, the spent fuel arisings and disposal rate were reviewed. Also, not only design requirements, such canister and disposal depth but also preliminary repository layout concept were reviewed. Based on the requirements and the other bases, the canister emplacement process in the borehole of the disposal tunnel was established. The established concept of the disposal canister emplacement process will be improved continuously with the future studies. And this concept can be effectively used in implementing the reference repository system of our own case.

  • PDF

Analyses on Thermal Stability and Structural Integrity of the Improved Disposal Systems for Spent Nuclear Fuels in Korea

  • Lee, Jongyoul;Kim, Hyeona;Kim, Inyoung;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.21-36
    • /
    • 2020
  • With respect to spent nuclear fuels, disposal containers and bentonite buffer blocks in deep geological disposal systems are the primary engineered barrier elements that are required to isolate radioactive toxicity for a long period of time and delay the leakage of radio nuclides such that they do not affect human and natural environments. Therefore, the thermal stability of the bentonite buffer and structural integrity of the disposal container are essential factors for maintaining the safety of a deep geological disposal system. The most important requirement in the design of such a system involves ensuring that the temperature of the buffer does not exceed 100℃ because of the decay heat emitted from high-level wastes loaded in the disposal container. In addition, the disposal containers should maintain structural integrity under loads, such as hydraulic pressure, at an underground depth of 500 m and swelling pressure of the bentonite buffer. In this study, we analyzed the thermal stability and structural integrity in a deep geological disposal environment of the improved deep geological disposal systems for domestic light-water and heavy-water reactor types of spent nuclear fuels, which were considered to be subject to direct disposal. The results of the thermal stability and structural integrity assessments indicated that the improved disposal systems for each type of spent nuclear fuel satisfied the temperature limit requirement (< 100℃) of the disposal system, and the disposal containers were observed to maintain their integrity with a safety ratio of 2.0 or higher in the environment of deep disposal.

Preliminary Review on Function, Needs and Approach of Underground Research Laboratory for Deep Geological Disposal of Spent Nuclear Fuel in Korea (사용후핵연료 심층처분을 위한 지하연구시설(URL)의 필요성 및 접근 방안)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Lee, Sang-Jin;Kim, Hyunjoo;Choi, Byong-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.157-178
    • /
    • 2013
  • This study gives a conceptual and basic direction to develop a URL (underground research laboratory) program for establishing the performance and safety of a deep geological disposal system in Korea. The concept of deep geological disposal is one of the preferred methodologies for the final disposal of spent nuclear fuel (SNF). Advanced countries with radioactive waste disposal have developed their own disposal concepts reasonable to their social and environmental conditions and applied to their commercial projects. Deep geological disposal system is a multi-barrier system generally consisting of an engineered barrier and natural barrier. A disposal facility and its host environment can be relied on a necessary containment and isolation over timescales envisaged as several to tens of thousands of years. A disposal system is not allowed in the commercial stage of the disposal program without a validation and demonstration of the performance and safety of the system. All issues confirming performance and safety of a disposal system include investigation, analysis, assessment, design, construction, operation and closure from planning to closure of the deep geological repository. Advanced countries perform RD&D (research, development & demonstration) programs to validate the performance and safety of a disposal system using a URL facility located at the preferred rock area within their own territories. The results and processes from the URL program contribute to construct technical criteria and guidelines for site selection as well as suitability and safety assessment of the final disposal site. Furthermore, the URL program also plays a decisive role in promoting scientific understanding of the deep geological disposal system for stakeholders, such as the public, regulator, and experts.

Comparative Analysis of Siting Criteria of High-Level Radioactive Waste Disposal in Leading Countries (해외국가별 고준위방사성폐기물 처분 후보부지 조사를 위한 기준 분석)

  • Taeyoo Na;Byung-Gon Chae;Eui-Seob Park;Min-Jun Kim
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.117-136
    • /
    • 2024
  • Deep geological disposal of high-level radioactive waste is imperative to national safety and environmental protection and it relies on establishing siting criteria suited to the geological and social conditions of each country. This paper compares the various geological and social criteria applied by different countries in the process of securing sites for the deep geological disposal of high-level radioactive waste. The present comparative analysis considers the siting criteria established by the worlds leading countries in high-level radioactive waste disposal with the aims of establishing detailed criteria appropriate to Korea's conditions and applying the criteria to explore safe and suitable sites for deep geological disposal. The findings of this research are expected to serve as a foundation for establishing criteria for the selection of disposal sites for high-level radioactive waste in Korea and are anticipated to contribute significantly to sustainable national development and environmental protection.

High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite

  • Jongyoul Lee;Kwangil Kim;Inyoung Kim;Heejae Ju;Jongtae Jeong;Changsoo Lee;Jung-Woo Kim;Dongkeun Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1540-1554
    • /
    • 2023
  • To use nuclear energy sustainably, spent nuclear fuel, classified as high-level radioactive waste and inevitably discharged after electricity generation by nuclear power plants, must be managed safely and isolated from the human environment. In Korea, the land area is limited and the amount of high-level radioactive waste, including spent nuclear fuels to be disposed, is relatively large. Thus, it is particularly necessary to maximize disposal efficiency. In this study, a high-efficiency deep geological repository concept was developed to enhance disposal efficiency. To this end, design strategies and requirements for a high-efficiency deep geological repository system were established, and engineered barrier modules with a disposal canister for pressurized water reactor (PWR)-type and pressurized heavy water reactor type Canada deuterium uranium (CANDU) plants were developed. Thermal and structural stability assessments were conducted for the repository system; it was confirmed that the system was suitable for the established strategies and requirements. In addition, the results of the nuclear safety assessment showed that the radiological safety of the new system met the Korean safety standards for disposal of high-level radioactive waste in terms of radiological dose. To evaluate disposal efficiency in terms of the disposal area, the layout of the developed disposal areas was assessed in terms of thermal limits. The estimated disposal areas were 2.51 km2 and 1.82 km2 (existing repository system: 4.57 km2) and the excavated host rock volumes were 2.7 Mm3 and 2.0 Mm3 (existing repository system: 4.5 Mm3) for thermal limits of 100 ℃ and 130 ℃, respectively. These results indicated that the area and the excavated volume of the new repository system were reduced by 40-60% compared to the existing repository system. In addition, methods to further improve the efficiency were derived for the disposal area for deep geological disposal of spent nuclear fuel. The results of this study are expected to be useful in establishing a national high-level radioactive waste management policy, and for the design of a commercial deep geological repository system for spent nuclear fuels.

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

Optimization of spent nuclear fuels per canister to improve the disposal efficiency of a deep geological repository in Korea

  • Jeong, Jongtae;Kim, Jung-Woo;Cho, Dong-Keun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2819-2827
    • /
    • 2022
  • The disposal area of a deep geological repository (DGR) for the disposal of spent nuclear fuels (SNFs) is estimated considering the spacing between deposition holes and between disposal tunnels, as determined by a thermal analysis using the decay heat of a reference SNF. Given the relatively large amount of decay heat of the reference SNF, the disposal area of the DGR is found to be overestimated. Therefore, we develop a computer program using MATLAB, termed ACom (Assembly Combination), to combine SNFs when stored in canisters such that the decay heat per canister is evenly distributed. The stability of ACom was checked and the overall distribution of the decay heat per canister was analyzed. Finally, ACom was applied to disposal scenarios suggested in the conceptual design of a DGR for SNFs, and it was confirmed that the decay heat per canister could be evenly distributed and that the maximum decay heat of the canister could be much lower than that of a canister estimated using a reference SNF. ACom can be used to improve the disposal efficiency by reducing the disposal area of a DGR for SNFs by ensuringg a relatively even distribution of decay heat per canister.

Corrosion behaviors of SS316L, Ti-Gr.2, Alloy 22 and Cu in KURT groundwater solutions for geological deep disposal

  • Gha-Young Kim;Junhyuk Jang;Minsoo Lee;Mihye Kong;Seok Yoon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4474-4480
    • /
    • 2022
  • Deep geological disposal using a multibarrier system is a promising solution for treating high-level radioactive (HLRW) waste. The HLRW canister represents the first barrier for the migration of radionuclides into the biosphere, therefore, the corrosion behavior of canister materials is of significance. In this study, the electrochemical behaviors of SS316L, Ti-Gr.2, Alloy 22, and Cu in naturally aerated KAERI underground research tunnel (KURT) groundwater solutions were examined. The corrosion potential, current, and impedance spectra of the test materials were recorded using electrochemical methods. According to polarization and impedance measurements, Cu exhibits relatively higher corrosion rates and a lower corrosion resistance ability than those exhibited by the other materials in the given groundwater condition. In the anodic dissolution tests, SS316L exposed to the groundwater solution exhibited the most uniform corrosion, as indicated by its surface roughness. This phenomenon could be attributed to the extremely low concentration of chloride ions in KURT groundwater.

Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea

  • Lee, Jongyoul;Kim, Inyoung;Ju, HeeJae;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.1-19
    • /
    • 2020
  • Based on the current high-level radioactive waste management basic plan and the analysis results of spent nuclear fuel characteristics, such as dimensions and decay heat, an improved geological disposal concept for spent nuclear fuel from domestic nuclear power plants was proposed in this study. To this end, disposal container concepts for spent nuclear fuel from two types of reactors, pressurized water reactor (PWR) and Canada deuterium uranium (CANDU), considering the dimensions and interim storage method, were derived. In addition, considering the cooling time of the spent nuclear fuel at the time of disposal, according to the current basic plan-based scenarios, the amount of decay heat capacity for a disposal container was determined. Furthermore, improved disposal concepts for each disposal container were proposed, and analyses were conducted to determine whether the design requirements for the temperature limit were satisfied. Then, the disposal efficiencies of these disposal concepts were compared with those of the existing disposal concepts. The results indicated that the disposal area was reduced by approximately 20%, and the disposal density was increased by more than 20%.

Preliminary Evaluation of Domestic Applicability of Deep Borehole Disposal System (심부시추공 처분시스템의 국내적용 가능성 예비 평가)

  • Lee, Jongyoul;Lee, Minsoo;Choi, Heuijoo;Kim, Kyungsu;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.491-505
    • /
    • 2018
  • As an alternative to deep geological disposal technology, which is considered as a reference concept, the domestic applicability of deep borehole disposal technology for high level radioactive waste, including spent fuel, has been preliminarily evaluated. Usually, the environment of deep borehole disposal, at a depth of 3 to 5 km, has more stable geological and geo-hydrological conditions. For this purpose, the characteristics of rock distribution in the domestic area were analyzed and drilling and investigation technologies for deep boreholes with large diameter were evaluated. Based on the results of these analyses, design criteria and requirements for the deep borehole disposal system were reviewed, and preliminary reference concept for a deep borehole disposal system, including disposal container and sealing system meeting the criteria and requirements, was developed. Subsequently, various performance assessments, including thermal stability analysis of the system and simulation of the disposal process, were performed in a 3D graphic disposal environment. With these analysis results, the preliminary evaluation of the domestic applicability of the deep borehole disposal system was performed from various points of view. In summary, due to disposal depth and simplicity, the deep borehole disposal system should bring many safety and economic benefits. However, to reduce uncertainty and to obtain the assent of the regulatory authority, an in-situ demonstration of this technology should be carried out. The current results can be used as input to establish a national high-level radioactive waste management policy. In addition, they may be provided as basic information necessary for stakeholders interested in deep borehole disposal technology.