• Title/Summary/Keyword: deep generative model

Search Result 123, Processing Time 0.021 seconds

Generative Model of Acceleration Data for Deep Learning-based Damage Detection for Bridges Using Generative Adversarial Network (딥러닝 기반 교량 손상추정을 위한 Generative Adversarial Network를 이용한 가속도 데이터 생성 모델)

  • Lee, Kanghyeok;Shin, Do Hyoung
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.42-51
    • /
    • 2019
  • Maintenance of aging structures has attracted societal attention. Maintenance of the aging structure can be efficiently performed with a digital twin. In order to maintain the structure based on the digital twin, it is required to accurately detect the damage of the structure. Meanwhile, deep learning-based damage detection approaches have shown good performance for detecting damage of structures. However, in order to develop such deep learning-based damage detection approaches, it is necessary to use a large number of data before and after damage, but there is a problem that the amount of data before and after the damage is unbalanced in reality. In order to solve this problem, this study proposed a method based on Generative adversarial network, one of Generative Model, for generating acceleration data usually used for damage detection approaches. As results, it is confirmed that the acceleration data generated by the GAN has a very similar pattern to the acceleration generated by the simulation with structural analysis software. These results show that not only the pattern of the macroscopic data but also the frequency domain of the acceleration data can be reproduced. Therefore, these findings show that the GAN model can analyze complex acceleration data on its own, and it is thought that this data can help training of the deep learning-based damage detection approaches.

Counterfactual image generation by disentangling data attributes with deep generative models

  • Jieon Lim;Weonyoung Joo
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.589-603
    • /
    • 2023
  • Deep generative models target to infer the underlying true data distribution, and it leads to a huge success in generating fake-but-realistic data. Regarding such a perspective, the data attributes can be a crucial factor in the data generation process since non-existent counterfactual samples can be generated by altering certain factors. For example, we can generate new portrait images by flipping the gender attribute or altering the hair color attributes. This paper proposes counterfactual disentangled variational autoencoder generative adversarial networks (CDVAE-GAN), specialized for data attribute level counterfactual data generation. The structure of the proposed CDVAE-GAN consists of variational autoencoders and generative adversarial networks. Specifically, we adopt a Gaussian variational autoencoder to extract low-dimensional disentangled data features and auxiliary Bernoulli latent variables to model the data attributes separately. Also, we utilize a generative adversarial network to generate data with high fidelity. By enjoying the benefits of the variational autoencoder with the additional Bernoulli latent variables and the generative adversarial network, the proposed CDVAE-GAN can control the data attributes, and it enables producing counterfactual data. Our experimental result on the CelebA dataset qualitatively shows that the generated samples from CDVAE-GAN are realistic. Also, the quantitative results support that the proposed model can produce data that can deceive other machine learning classifiers with the altered data attributes.

Few-Shot Image Synthesis using Noise-Based Deep Conditional Generative Adversarial Nets

  • Msiska, Finlyson Mwadambo;Hassan, Ammar Ul;Choi, Jaeyoung;Yoo, Jaewon
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.79-87
    • /
    • 2021
  • In recent years research on automatic font generation with machine learning mainly focus on using transformation-based methods, in comparison, generative model-based methods of font generation have received less attention. Transformation-based methods learn a mapping of the transformations from an existing input to a target. This makes them ambiguous because in some cases a single input reference may correspond to multiple possible outputs. In this work, we focus on font generation using the generative model-based methods which learn the buildup of the characters from noise-to-image. We propose a novel way to train a conditional generative deep neural model so that we can achieve font style control on the generated font images. Our research demonstrates how to generate new font images conditioned on both character class labels and character style labels when using the generative model-based methods. We achieve this by introducing a modified generator network which is given inputs noise, character class, and style, which help us to calculate losses separately for the character class labels and character style labels. We show that adding the character style vector on top of the character class vector separately gives the model rich information about the font and enables us to explicitly specify not only the character class but also the character style that we want the model to generate.

Depth Image Restoration Using Generative Adversarial Network (Generative Adversarial Network를 이용한 손실된 깊이 영상 복원)

  • Nah, John Junyeop;Sim, Chang Hun;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.614-621
    • /
    • 2018
  • This paper proposes a method of restoring corrupted depth image captured by depth camera through unsupervised learning using generative adversarial network (GAN). The proposed method generates restored face depth images using 3D morphable model convolutional neural network (3DMM CNN) with large-scale CelebFaces Attribute (CelebA) and FaceWarehouse dataset for training deep convolutional generative adversarial network (DCGAN). The generator and discriminator equip with Wasserstein distance for loss function by utilizing minimax game. Then the DCGAN restore the loss of captured facial depth images by performing another learning procedure using trained generator and new loss function.

Generative Adversarial Networks: A Literature Review

  • Cheng, Jieren;Yang, Yue;Tang, Xiangyan;Xiong, Naixue;Zhang, Yuan;Lei, Feifei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4625-4647
    • /
    • 2020
  • The Generative Adversarial Networks, as one of the most creative deep learning models in recent years, has achieved great success in computer vision and natural language processing. It uses the game theory to generate the best sample in generator and discriminator. Recently, many deep learning models have been applied to the security field. Along with the idea of "generative" and "adversarial", researchers are trying to apply Generative Adversarial Networks to the security field. This paper presents the development of Generative Adversarial Networks. We review traditional generation models and typical Generative Adversarial Networks models, analyze the application of their models in natural language processing and computer vision. To emphasize that Generative Adversarial Networks models are feasible to be used in security, we separately review the contributions that their defenses in information security, cyber security and artificial intelligence security. Finally, drawing on the reviewed literature, we provide a broader outlook of this research direction.

Synthetic Image Dataset Generation for Defense using Generative Adversarial Networks (국방용 합성이미지 데이터셋 생성을 위한 대립훈련신경망 기술 적용 연구)

  • Yang, Hunmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.49-59
    • /
    • 2019
  • Generative adversarial networks(GANs) have received great attention in the machine learning field for their capacity to model high-dimensional and complex data distribution implicitly and generate new data samples from the model distribution. This paper investigates the model training methodology, architecture, and various applications of generative adversarial networks. Experimental evaluation is also conducted for generating synthetic image dataset for defense using two types of GANs. The first one is for military image generation utilizing the deep convolutional generative adversarial networks(DCGAN). The other is for visible-to-infrared image translation utilizing the cycle-consistent generative adversarial networks(CycleGAN). Each model can yield a great diversity of high-fidelity synthetic images compared to training ones. This result opens up the possibility of using inexpensive synthetic images for training neural networks while avoiding the enormous expense of collecting large amounts of hand-annotated real dataset.

Imbalanced sample fault diagnosis method for rotating machinery in nuclear power plants based on deep convolutional conditional generative adversarial network

  • Zhichao Wang;Hong Xia;Jiyu Zhang;Bo Yang;Wenzhe Yin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2096-2106
    • /
    • 2023
  • Rotating machinery is widely applied in important equipment of nuclear power plants (NPPs), such as pumps and valves. The research on intelligent fault diagnosis of rotating machinery is crucial to ensure the safe operation of related equipment in NPPs. However, in practical applications, data-driven fault diagnosis faces the problem of small and imbalanced samples, resulting in low model training efficiency and poor generalization performance. Therefore, a deep convolutional conditional generative adversarial network (DCCGAN) is constructed to mitigate the impact of imbalanced samples on fault diagnosis. First, a conditional generative adversarial model is designed based on convolutional neural networks to effectively augment imbalanced samples. The original sample features can be effectively extracted by the model based on conditional generative adversarial strategy and appropriate number of filters. In addition, high-quality generated samples are ensured through the visualization of model training process and samples features. Then, a deep convolutional neural network (DCNN) is designed to extract features of mixed samples and implement intelligent fault diagnosis. Finally, based on multi-fault experimental data of motor and bearing, the performance of DCCGAN model for data augmentation and intelligent fault diagnosis is verified. The proposed method effectively alleviates the problem of imbalanced samples, and shows its application value in intelligent fault diagnosis of actual NPPs.

Fault diagnosis of nuclear power plant sliding bearing-rotor systems using deep convolutional generative adversarial networks

  • Qi Li;Weiwei Zhang;Feiyu Chen;Guobing Huang;Xiaojing Wang;Weimin Yuan;Xin Xiong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.2958-2973
    • /
    • 2024
  • Sliding bearings are crucial rotating mechanical components in nuclear power plants, and their failures can result in severe economic losses and human casualties. Deep learning provides a new approach to bearing fault diagnosis, but there is currently a lack of a universal fault diagnosis model for studying bearing-rotor systems under various operating conditions, speeds and faults. Research on bearing-rotor systems supported by sliding bearings is limited, leading to insufficient fault data. To address these issues, this paper proposes a fault diagnosis model framework for bearing-rotor systems based on a deep convolutional generative adversarial network (TF-DLGAN). This model not only exhibits outstanding fault diagnosis performance but also addresses the issue of insufficient fault data. An experimental platform is constructed to conduct fault experiments under various operating conditions, speeds and faults, establishing a dataset for sliding bearing-rotor system faults. Finally, the model's effectiveness is validated using this dataset.

Radar-based rainfall prediction using generative adversarial network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측)

  • Yoon, Seongsim;Shin, Hongjoon;Heo, Jae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.471-484
    • /
    • 2023
  • Deep learning models based on generative adversarial neural networks are specialized in generating new information based on learned information. The deep generative models (DGMR) model developed by Google DeepMind is an generative adversarial neural network model that generates predictive radar images by learning complex patterns and relationships in large-scale radar image data. In this study, the DGMR model was trained using radar rainfall observation data from the Ministry of Environment, and rainfall prediction was performed using an generative adversarial neural network for a heavy rainfall case in August 2021, and the accuracy was compared with existing prediction techniques. The DGMR generally resembled the observed rainfall in terms of rainfall distribution in the first 60 minutes, but tended to predict a continuous development of rainfall in cases where strong rainfall occurred over the entire area. Statistical evaluation also showed that the DGMR method is an effective rainfall prediction method compared to other methods, with a critical success index of 0.57 to 0.79 and a mean absolute error of 0.57 to 1.36 mm in 1 hour advance prediction. However, the lack of diversity in the generated results sometimes reduces the prediction accuracy, so it is necessary to improve the diversity and to supplement it with rainfall data predicted by a physics-based numerical forecast model to improve the accuracy of the forecast for more than 2 hours in advance.

Effective Analsis of GAN based Fake Date for the Deep Learning Model (딥러닝 훈련을 위한 GAN 기반 거짓 영상 분석효과에 대한 연구)

  • Seungmin, Jang;Seungwoo, Son;Bongsuck, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.137-141
    • /
    • 2022
  • To inspect the power facility faults using artificial intelligence, it need that improve the accuracy of the diagnostic model are required. Data augmentation skill using generative adversarial network (GAN) is one of the best ways to improve deep learning performance. GAN model can create realistic-looking fake images using two competitive learning networks such as discriminator and generator. In this study, we intend to verify the effectiveness of virtual data generation technology by including the fake image of power facility generated through GAN in the deep learning training set. The GAN-based fake image was created for damage of LP insulator, and ResNet based normal and defect classification model was developed to verify the effect. Through this, we analyzed the model accuracy according to the ratio of normal and defective training data.