• Title/Summary/Keyword: deep discharge

Search Result 160, Processing Time 0.025 seconds

Evaluation of Discharge Capacity with PVDs Types in Waste Lime Area (폐석회지반에서의 연직배수재의 종류에 따른 통수능 평가)

  • Shin, Eun-Chul;Kim, Gi-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.39-44
    • /
    • 2008
  • Recently, the demand for industrial and residential lands are being increased with economic growth, however, it is difficult to acquire the land for development with good ground condition. For efficient and balanced development of land, new development projects are being carried out not only the areas with inland but those with the soft ground as well. As soft grounds have complex engineering properties and high variations such as ground settlement especially when their strength is low and depth is deep, it needs to accurately analyze the engineering properties of soft grounds and find general measurement for stabilization and economic design and management. Prefabricated vertical drain technology is widely used to accelerate the consolidation of soft clay deposits and dredged soil under the preloading and various types of vertical drain are being used with the discharge capacity. Under field conditions, the discharge capacity is changed with various reason, such as soil condition, confinement pressure, long-term clogging and folding of vertical drains, and so on. Therefore, many researcher and engineer recommend the use of required discharge capacity. In this paper, the experimental study were carried out for two different types of vertical drains by utilizing the large-scale model tests and waste lime.

  • PDF

Micro-Hole Machining Using MEDM According to Machining Depth (미소구멍의 가공 깊이에 따른 미세방전 가공특성)

  • 김재현;김보현;류시형;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.227-232
    • /
    • 2003
  • In order to make a deep and precise micro-hole, electrode wear and clearance between the electrode and the workpiece are important parameters using micro-electrical discharge machining. In this study, experiments were carried out to show the characteristics of electrode wear and radial clearance with respect to the depth of machined hole. Electrode wear varied with respect to the depth of hole. With deeper machined hole, bigger clearance was observed. Also it was found that the diameter of electrode influences machining characteristics of deep holes.

Drug selection for sedation and general anesthesia in children undergoing ambulatory magnetic resonance imaging

  • Jung, Sung Mee
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.3
    • /
    • pp.159-168
    • /
    • 2020
  • The demand for drug-induced sedation for magnetic resonance imaging (MRI) scans have substantially increased in response to increases in MRI utilization and growing interest in anxiety in children. Understanding the pharmacologic options for deep sedation and general anesthesia in an MRI environment is essential to achieve immobility for the successful completion of the procedure and ensure rapid and safe discharge of children undergoing ambulatory MRI. For painless diagnostic MRI, a single sedative/anesthetic agent without analgesia is safer than a combination of multiple sedatives. The traditional drugs, such as chloral hydrate, pentobarbital, midazolam, and ketamine, are still used due to the ease of administration despite low sedation success rate, prolonged recovery, and significant adverse events. Currently, dexmedetomidine, with respiratory drive preservation, and propofol, with high effectiveness and rapid recovery, are preferred for children undergoing ambulatory MRI. General anesthesia using propofol or sevoflurane can also provide predictable rapid time to readiness and scan times in infants or children with comorbidities. The selection of appropriate drugs as well as sufficient monitoring equipment are vital for effective and safe sedation and anesthesia for ambulatory pediatric MRI.

Study of silicon deep via etching mechanism using in-situ temperature monitoring of silicon exposed to $SF_6/O_2$ plasma discharge

  • Im, Yeong-Dae;Lee, Seung-Hwan;Yu, Won-Jong;Jeong, Oh-Jin;Lee, Han-Chun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.116-117
    • /
    • 2009
  • 식각 공정변화 즉 상부 ICP 파워, 반응기 압력, 실리콘 기판 온도변화에 따른 실리콘 딥 비어 (deep via) 의 형상 변화 메커니즘을 연구하였다. 메커니즘을 연구하기 위해 $SF_6/O_2$ 플라즈마에 노출된 실리콘 기판의 공정변화에 따른 표면 온도변화를 실시간으로 측정하여 플라즈마 내 positive ions의 거동을 분석하였다. 실리콘 기판의 표면온도를 상승시키는 주된 요인은 positive ions임을 확인할 수 있었으며 이는 기판에 적용된 negative voltage로 인하여 나타난 이온포격이 그 원인임을 알 수 있었다. 상대적으로 radical은 실리콘 표면온도 상승에 큰 역할을 하지 못하였다. 기판 표면온도가 상승 할수록 실리콘 딥 비어 구조에 undercut, local bowing과 같은 측벽 식각이 활성화됨을 확인할 수 있었으며 이는 기판에 들어오는 positive ions가 측벽식각을 유도하는 것으로 해석할 수 있었다.

  • PDF

A Numerical Prediction for Water Quality at the Developing Region of Deep Sea Water in the East Sea Using Ecological Model (생태계모델을 이용한 동해 심층수 개발해역의 수질환경 변화예측)

  • Lee, In-Cheol;Yoon, Seok-Jin;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.34-41
    • /
    • 2008
  • As a basic study for developing a forecasting/estimating system that predicts water quality changes when Deep Sea Water (DSW) drains to the ocean after using it, this study was carried out as follows: 1) numerical simulation of the present state at DSW developing region in the East sea using SWEM, 2) numerical prediction of water quality changes by effluent DSW, 3) analysis of influence degree 'With defined DEI (DSW effect index) at F station. On the whole, when DSW drained to the ocean, Chl-a, COD and water-temperature were decreased and DIN, DIP and DO were increased by effluent DSW, and Salinity was steady. According to analysis of influence degree, the influence degree of DIN was the highest and it was high in order of Chl-a, COD, Water-temperature, DO, DIP and Salinity. The influence degree classified by DSW effluent position was predicted that suiface outflow was lower than bottom outflow. Ad When DSW discharge increased 10 times, the influence degree increased about $5{\sim}14$ times.

Effects of the addition of low-dose ketamine to propofol anesthesia in the dental procedure for intellectually disabled patients

  • Hirayama, Akira;Fukuda, Ken-ichi;Koukita, Yoshihiko;Ichinohe, Tatsuya
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.19 no.3
    • /
    • pp.151-158
    • /
    • 2019
  • Background: This study aimed to examine whether the combination of low-dose ketamine and propofol in deep sedation is clinically useful in controlling the behavior in intellectually disabled patients who are typically extremely noncooperative during dental procedures. Methods: A total of 107 extremely noncooperative intellectually disabled adult patients were analyzed. In all patients, deep sedation was performed using either propofol alone (group P) or using a combination of propofol and 0.2 mg/kg or 0.4 mg/kg ketamine (groups PK0.2 and PK0.4, respectively). The procedures were performed in the order of insertion of nasal cannula into the nostril, attachment of mouth gag, and mouth cleaning and scaling. The frequency of patient movement during the procedures, mean arterial pressure, heart rate, peripheral oxygen saturation, recovery time, discharge time, and postoperative nausea and vomiting were examined. Results: The three groups were significantly different only in the frequency of patient movement upon stimulation during single intravenous injection of propofol and scaling. Conclusion: For propofol deep sedation, in contrast to intravenous injection of propofol alone, prior intravenous injection of low-dose ketamine (0.4 mg/kg) is clinically useful because it neither affects recovery, nor causes side effects and can suppress patient movement and vascular pain during procedures.

A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using a Deep Neural Network (딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법)

  • Khan, Asad;Ko, Young-Hwi;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • For the safe and reliable operation of lithium-ion batteries in electric vehicles or energy storage systems, having accurate information of the battery, such as the state of charge (SOC), is essential. Many different techniques of battery SOC estimation have been developed, such as the Kalman filter. However, when this filter is applied to multiple batteries, it has difficulty maintaining the accuracy of the estimation over all cells owing to the difference in parameter values of each cell. The difference in the parameter of each cell may increase as the operation time accumulates due to aging. In this paper, a novel deep neural network (DNN)-based SOC estimation method for multi-cell application is proposed. In the proposed method, DNN is implemented to determine the nonlinear relationships of the voltage and current at different SOCs and temperatures. In the training, the voltage and current data obtained at different temperatures during charge/discharge cycles are used. After the comprehensive training with the data obtained from the cycle test with a cell, the resulting algorithm is applied to estimate the SOC of other cells. Experimental results show that the mean absolute error of the estimation is 1.213% at 25℃ with the proposed DNN-based SOC estimation method.

Comparison of physics-based and data-driven models for streamflow simulation of the Mekong river (메콩강 유출모의를 위한 물리적 및 데이터 기반 모형의 비교·분석)

  • Lee, Giha;Jung, Sungho;Lee, Daeeop
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.503-514
    • /
    • 2018
  • In recent, the hydrological regime of the Mekong river is changing drastically due to climate change and haphazard watershed development including dam construction. Information of hydrologic feature like streamflow of the Mekong river are required for water disaster prevention and sustainable water resources development in the river sharing countries. In this study, runoff simulations at the Kratie station of the lower Mekong river are performed using SWAT (Soil and Water Assessment Tool), a physics-based hydrologic model, and LSTM (Long Short-Term Memory), a data-driven deep learning algorithm. The SWAT model was set up based on globally-available database (topography: HydroSHED, landuse: GLCF-MODIS, soil: FAO-Soil map, rainfall: APHRODITE, etc) and then simulated daily discharge from 2003 to 2007. The LSTM was built using deep learning open-source library TensorFlow and the deep-layer neural networks of the LSTM were trained based merely on daily water level data of 10 upper stations of the Kratie during two periods: 2000~2002 and 2008~2014. Then, LSTM simulated daily discharge for 2003~2007 as in SWAT model. The simulation results show that Nash-Sutcliffe Efficiency (NSE) of each model were calculated at 0.9(SWAT) and 0.99(LSTM), respectively. In order to simply simulate hydrological time series of ungauged large watersheds, data-driven model like the LSTM method is more applicable than the physics-based hydrological model having complexity due to various database pressure because it is able to memorize the preceding time series sequences and reflect them to prediction.

A Method of Hole Pass-Through Evaluation for EDM Drilling (방전드릴링에서 홀 관통 평가 방법)

  • Lee, Cheol-Soo;Choi, In-Hugh;Heo, Eun-Young;Kim, Jong-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.220-226
    • /
    • 2012
  • The Electric discharge machining (EDM) process is used to minimize the difference between designed feature and machined feature while the most workpiece is removed through the cutting processes. The tiny-deep hole machining and perpendicular wall machining in mold and die are good applications of EDM. Among EDM equipment, the super drill uses the hollowed electrode to eliminate the debris which causes the second discharge with the electrode and degrades the machining quality. Through the hollow, the high pressured discharge oil is supplied to remove the debris together with the spindle rotation. The thin-hollow electrode tends to easily wear out compared to the sold die-sinking electrode and its wear rate is might not allowed to monitor in real time during discharging. Up to now, the wear amount is measured by off line method, which leads machining time to increase because the hole pass-through moment can be check by visual (manually) with the extra tool path. Therefore, this study suggests the attractive method to evaluate the hole pass-through moment in which the gap voltage and z-axis encoder pulse are monitored to predict the moment. The commercial super drill is used to validate the proposed method and the experiment is carried out.

The Scope of Potential Duties for Environment Protection in the Regulation on the Exploitation for Polymetalic Nodules in the Area (심해저 망간단괴 생산규칙의 잠재적 환경보호 의무 범위에 관한 연구)

  • Kim, Jung-Eun;Park, Seong-Wook
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.81-90
    • /
    • 2015
  • International Seabed Authority (ISA) is currently developing rules with regard to exploitation of manganese nodules which will be contained in its first regulations governing the exploitation of deep seabed mineral resources. A stakeholder survey was conducted in the early 2014 by ISA with the aim of facilitating participation of interested entities in the development process of the rules. The stakeholders who had replied to the survey included existing contractors, sponsoring States, environmentalists, academics, and nongovernmental organizations. Opinions given by them largely reflect their own interests. This paper aims to clarify the scope of the obligations regarding the environmental protection which may be imposed on contractors under the new regulations for the exploitation of manganese nodules. To do so, it first analyses the express provisions on environmental protection applicable to deep seabed mining included in the Law of the Sea Convention, its agreement on implementation of Part XI, and the regulations on exploration for manganese nodules. Secondly, it categorizes these obligations based on the categories of international obligations suggested by Combacau and Alland. Based on the categorizations this paper concludes that, in addition to the existing duties to protect deep seabed environment within the Law of the Sea Convention system, the following new obligations could be added: conservation of exploitation sites for a limited time after the contract is ceased; taking all necessary measures for rehabilitation of destroyed ecosystems that occurredas a result of mining activities; monitoring exploitation sites for a limited period time after the contract is ceased; observing rules and standards on safety of ships and environmental protection adopted under IMO instruments; regulation on the discharge of mine tailings from the facilities used for exploitation of deep sea minerals. Lastly, this paper attempts to provide ways of reflecting national interests in terms of potential obligations which may be included in the new regulations.