• Title/Summary/Keyword: deep depth

Search Result 1,507, Processing Time 0.03 seconds

A Study on the Novel Prediction of Mold Wall Thickness for a Deep Depth Injection Mold (깊이가 깊은 사출 금형의 새로운 측벽 두께 설계에 관한 연구)

  • Hwang, S.J.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.528-533
    • /
    • 2008
  • Cavity in the mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Subsequently mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress concentration and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was modified from beam theory considering cantilever and two points bending situation while previous equation was modified from just cantilever bending situation. The validity of novel equation was verified through computer simulations for various mold side and wall thickness.

A method of mold wall thickness design for a deep depth injection mold (깊이가 깊은 사출 금형의 측벽 설계 방법)

  • Hwang, S.J.;Lyu, M.Y.;Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.301-304
    • /
    • 2008
  • The cavity of mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was consisted with cantilever and two points bending while previous equation was modified from just cantilever bending. The validity of novel equation was verified through computer simulation.

  • PDF

An Experimental Study on the Shear Behavior of High Strength Concrete Deep Beam (고강도 철근 콘크리트 깊은 보의 전단거동에 관한 실험적 연구)

  • 함영삼;양근혁;이영호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.897-902
    • /
    • 2001
  • The purpose of this experimental study is to investigate the shear behavior of high-strength concrete deep beam and to grasp the conservatism of ACI Building Code. Experimental results on 12 deep beams under two equal symmetrically placed point loads are reported. Main variables are vertical and horizontal web reinforcement and shear span-to-overall depth ratio. Test results indicated that web reinforcement dose not affect on formation of inclined cracks but shear span-to-overall depth ratio affect on inclined shear cracks and ultimate shear strength. Addition of vertical web reinforcement improves ultimate shear strength of H.S.C. deep beams that shear span-to-overall depth ratio is 1.0. Considerable increase in ultimate shear strength of H.S.C. deep beams with increasing horizontal web reinforcement that shear span-to-overall depth ratio is 0.5. Especially with increasing concrete strength($f_{ck}$) the ACI code is conservative in estamating the ultimate shear strength of deep beams.

  • PDF

Oceanographic Characteristics of the Japan Sea Proper Water I. Oceanographic Conditions of the Japan Sea and the Japan Sea Proper Water in Winter (동해고유수의 해양학적 특성 I. 겨울철 동해의 해황과 동해고유수)

  • 최용규;양성기
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.317-332
    • /
    • 1994
  • Based on the Results of Marine Meteorological and Oceanographical Observations (1966 ~ 1987), oceanographic conditions of the Japan Sea in winter was studied in relation to the Japan Sea Proper Water (JSPW). The mean and dispersion of the deep water above 1000 m depth are 0.26$\pm$0.2$^{\circ}C$ in temperature and 5.1$\pm$0.25 ml/h in oxygen. The mean and dispersion of the bottom water below 1000m depth are 0.07$\pm$$0.04^{\circ}C$ in temperature and 5.1$\pm$0.15ml/1 in oxygen. The distributions of the temperature and dissolved oxygen in the deep water above 1000m depth are ranged wider than 각one of the bottom water below 1000m depth in T-S and T-$ extrm{O}_2$ diagrams. The bottom water are showed more homogeneous and smaller variations than the deep water in the characteristics of water mass. The deep water above 1000m depth is active in contact with the atmosphere. The JSPW similar to the above characteristics is showed in the open ocean of the north of $40^{\circ}$30""N, west of $138^{\circ}$E. Therefore, the deep water is formed probably by the open-ocean convection.tion.

  • PDF

Analysis of water balance for pending depth treatment in paddy fields (논 담수심 처리에 따른 관개용수량의 분석)

  • Park, Ki-Jung;Chung, Sang-Ok;Sohn, Seung-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.13-21
    • /
    • 2004
  • The purpose of this study was to investigate tile effects of pending depth treatment on water balance in paddy fields. Field experiment was performed in an experimental farm in Taegu, southern part of Korea during the rice growing season In 2001, 2002 and 2003. Experimental plots were three 8m ${\times}$ 80m rectangular plots. Three pending depth treatments, very shallow, shallow, and deep were used. Daily values of water balance components were measured in the field. The irrigation amounts measured at the experimental plots showed that the very shallow and the shallow ponded plots required smaller amount than the deep ponded plot. The shallow ponded plot saved irrigation water about 17.7% compared with the traditional deep ponded plot in 2001 The very shallow ponded plot saved irrigation water about 25.7% compared with the traditional deep ponded Plot in 2002, The shallow ponded plot saved irrigation water about 18% compared with the deep ponded plot in 2003.

A Study on the Wall Thickness Design for Injection Molding (사출 금형의 벽두께 설계 방법의 고찰)

  • Hwang, S.J.;Lyu, M.Y.;Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, K.Y.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.149-153
    • /
    • 2008
  • The cavity of mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was consisted with cantilever and two points bending while previous equation was modified from just cantilever bending. The validity of novel equation was verified through computer simulation.

  • PDF

Non-Homogeneous Haze Synthesis for Hazy Image Depth Estimation Using Deep Learning (불균일 안개 영상 합성을 이용한 딥러닝 기반 안개 영상 깊이 추정)

  • Choi, Yeongcheol;Paik, Jeehyun;Ju, Gwangjin;Lee, Donggun;Hwang, Gyeongha;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.45-54
    • /
    • 2022
  • Image depth estimation is a technology that is the basis of various image analysis. As analysis methods using deep learning models emerge, studies using deep learning in image depth estimation are being actively conducted. Currently, most deep learning-based depth estimation models are being trained with clean and ideal images. However, due to the lack of data on adverse conditions such as haze or fog, the depth estimation may not work well in such an environment. It is hard to sufficiently secure an image in these environments, and in particular, obtaining non-homogeneous haze data is a very difficult problem. In order to solve this problem, in this study, we propose a method of synthesizing non-homogeneous haze images and a learning method for a monocular depth estimation deep learning model using this method. Considering that haze mainly occurs outdoors, datasets mainly containing outdoor images are constructed. Experiment results show that the model with the proposed method is good at estimating depth in both synthesized and real haze data.

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.

Deep Learning Based Monocular Depth Estimation: Survey

  • Lee, Chungkeun;Shim, Dongseok;Kim, H. Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.297-305
    • /
    • 2021
  • Monocular depth estimation helps the robot to understand the surrounding environments in 3D. Especially, deep-learning-based monocular depth estimation has been widely researched, because it may overcome the scale ambiguity problem, which is a main issue in classical methods. Those learning based methods can be mainly divided into three parts: supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning trains the network from dense ground-truth depth information, unsupervised one trains it from images sequences and semi-supervised one trains it from stereo images and sparse ground-truth depth. We describe the basics of each method, and then explain the recent research efforts to enhance the depth estimation performance.

Tests of reinforced concrete deep beams

  • Lu, Wen-Yao;Hsiao, Hsin-Tai;Chen, Chun-Liang;Huang, Shu-Min;Lin, Ming-Che
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.357-372
    • /
    • 2015
  • This study reports the test results of twelve reinforced concrete deep beams. The deep beams were tested with loads applied through and supported by columns. The main variables studied were the shear span-to-depth ratios, and the horizontal and vertical stirrups. The shear strengths can be effectively enhanced for deep beams reinforced with both horizontal and vertical stirrups. The test results indicate the shear strengths of deep beams increase with the decrease of the shear span-to-depth ratios. The normalized shear strengths of the deep beams did not increase proportionally with an increase in effective depth. An analytical method for predicting the shear strengths of deep beams is proposed in this study. The shear strengths predicted by the proposed method and the strut-and-tie model of the ACI Code are compared with available test results. The comparison shows the proposed method can predict the shear strengths of reinforced concrete deep beams more accurately than the strut-and-tie model of the ACI Code.