A. A. Abd El-Aziz; Nesrine A. Azim;Mahmood A. Mahmood;Hamoud Alshammari
International Journal of Computer Science & Network Security
/
제24권10호
/
pp.91-96
/
2024
Corona Virus is a big threat to humanity. Now, the whole world is struggling to reduce the spread of Corona virus. Wearing masks is one of the practices that help to control the spread of the virus according to the world health organization. However, ensuring all people wear facemask is not an easy task. In this paper, we propose a simple and effective model for real-time monitoring using the convolution neural network to detect whether an individual wears a face mask or not. The model is trained, validated, tested upon two datasets. Corresponding to dataset 1, the accuracy of the model was 95.77% and, it was 94.58% for dataset 2.
본 논문은 직종별 근무 환경에 따른 상대적 운동량을 고려한 맞춤형 AI 운동 추천 서비스 방법을 제안한다. 가속도 및 자이로 센서를 활용하여 수집된 데이터를 18가지 일상생활의 신체활동으로 분류한 WISDM 데이터베이스를 기반으로 전신, 하체, 상체의 3가지 활동으로 분류한 후 인식된 활동 지표를 통해 적절한 운동을 추천한다. 본 논문에서 신체활동 분류를 위해서 사용하는 1차원 합성곱 신경망(1D CNN; 1 Dimensional Convolutional Neural Network) 모델은 커널 크기가 다른 다수의 1D 컨볼루션(Convolution) 계층을 병렬적으로 연결한 컨볼루션 블록을 사용한다. 컨볼루션 블록은 하나의 입력 데이터에 다층 1D 컨볼루션을 적용함으로써 심층 신경망 모델로 추출할 수 있는 입력 패턴의 세부 지역 특징을 보다 얇은 계층으로도 효과적으로 추출 할 수 있다. 제안한 신경망 모델의 성능 평가를 위해서 기존 순환 신경망(RNN; Recurrent Neural Network) 모델과 비교 실험한 결과 98.4%의 현저한 정확도를 보였다.
In this paper, we propose a novel knowledge distillation algorithm to create an compressed deep ensemble network coupled with the combined use of local and global features of face images. In order to transfer the capability of high-level recognition performances of the ensemble deep networks to a single deep network, the probability for class prediction, which is the softmax output of the ensemble network, is used as soft target for training a single deep network. By applying the knowledge distillation algorithm, the local feature informations obtained by training the deep ensemble network using facial subregions of the face image as input are transmitted to a single deep network to create a so-called compressed ensemble DCNN. The experimental results demonstrate that our proposed compressed ensemble deep network can maintain the recognition performance of the complex ensemble deep networks and is superior to the recognition performance of a single deep network. In addition, our proposed method can significantly reduce the storage(memory) space and execution time, compared to the conventional ensemble deep networks developed for face recognition.
Deep learning has been used for various processing centered on image recognition. One core algorithms of the deep learning, convolutional neural network is an deep neural network that specialized in image recognition. In this paper, we use a convolutional neural network to classify forest insects and propose an optimization method. Experiments were carried out by combining two weight initialization and six parameter update methods. As a result, the Xavier-SGD method showed the highest performance with an accuracy of 82.53% in the 12 different combinations of experiments. Through this, the latest learning algorithms, which complement the disadvantages of the previous parameter update method, we conclude that it can not lead to higher performance than existing methods in all application environments.
최근 이미지 인식, 영상 인식, 음성 인식, 자연어 처리 등 다양한 분야에 인공지능이 적용되면서 딥러닝(Deep learning) 기술에 관한 관심이 높아지고 있다. 딥러닝 중에서도 가장 대표적인 알고리즘으로 이미지 인식 및 분류에 강점이 있고 각 분야에 많이 쓰이고 있는 CNN(Convolutional Neural Network)에 대한 많은 연구가 진행되고 있다. 본 논문에서는 일반적인 CNN 구조를 변형한 새로운 네트워크 구조를 제안하고자 한다. 일반적인 CNN 구조는 convolution layer, pooling layer, fully-connected layer로 구성된다. 그러므로 본 연구에서는 일반적인 CNN 구조 내부에 FC를 첨가한 새로운 네트워크를 구성하고자 한다. 이러한 변형은 컨볼루션된 이미지에 신경회로망이 갖는 장점인 일반화 기능을 포함시켜 정확도를 올리고자 한다.
화재 재해를 예방하기 위해 조기 화재 탐지 기술의 필요성이 증대되고 있다. 화염 및 연기를 감지하기 위해 열, 연기 및 불꽃에 대한 센서 감지 장치가 널리 사용되고 있으나, 이 시스템은 센서 주변 환경의 요소에 따라 제한된다. 이 문제들을 해결하기 위해 다수의 이미지 기반 화재 탐지 시스템이 개발되고 있다. 본 논문에서는 카메라 입력 이미지로 부터 합성곱 신경망을 이용하여 연기 이미지와 불꽃 이미지에 대한 학습을 통해 특징 맵을 추출하고, 이를 사용하여 다른 입력 이미지를 연기와 불꽃으로 분류하는 이미지 기반 화재 감지 시스템을 구현하였다. 다양한 조건의 이미지를 대상으로 실험한 결과 연기와 불꽃으로 분류하는데 우수한 성능을 보여주었다.
본 논문은 의료진단 검출 분야에서 혈관, 신경조직, 망막 손상 그리고 다양한 심혈관계 질환과 치매까지 진단하는 데 유용하게 사용하고 있는 안저 영상에 CNN(Convolution Neural Network) 알고리즘을 적용하고 녹내장 병변을 검출하기 위한 연구를 진행한다. 실험을 위하여 정상 안저 영상과 녹내장 병변이 있는 안저 영상으로 구성된 데이터 세트를 AlexNet으로 분류하고 그 성능을 확인하였다.
The complexity of deep learning models affects the real-time performance of gesture recognition, thereby limiting the application of gesture recognition algorithms in actual scenarios. Hence, a residual learning neural network based on a deep convolutional neural network is proposed. First, small convolution kernels are used to extract the local details of gesture images. Subsequently, a shallow residual structure is built to share weights, thereby avoiding gradient disappearance or gradient explosion as the network layer deepens; consequently, the difficulty of model optimisation is simplified. Additional convolutional neural networks are used to accelerate the refinement of deep abstract features based on the spatial importance of the gesture feature distribution. Finally, a fully connected cascade softmax classifier is used to complete the gesture recognition. Compared with the dense connection multiplexing feature information network, the proposed algorithm is optimised in feature multiplexing to avoid performance fluctuations caused by feature redundancy. Experimental results from the ISOGD gesture dataset and Gesture dataset prove that the proposed algorithm affords a fast convergence speed and high accuracy.
This paper proposes a battery remaining useful life (RUL) prediction method using a deep learning-based EMD-CNN-LSTM hybrid method. The proposed method pre-processes capacity data by applying empirical mode decomposition (EMD) and predicts the remaining useful life using CNN-LSTM. CNN-LSTM is a hybrid method that combines convolution neural network (CNN), which analyzes spatial features, and long short term memory (LSTM), which is a deep learning technique that processes time series data analysis. The performance of the proposed remaining useful life prediction method is verified using the battery aging experiment data provided by the NASA Ames Prognostics Center of Excellence and shows higher accuracy than does the conventional method.
IEIE Transactions on Smart Processing and Computing
/
제4권1호
/
pp.35-43
/
2015
Over the past couple of years, tremendous progress has been made in applying deep learning (DL) techniques to computer vision. Especially, deep convolutional neural networks (DCNNs) have achieved state-of-the-art performance on standard recognition datasets and tasks such as ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). Among them, GoogLeNet network which is a radically redesigned DCNN based on the Hebbian principle and scale invariance set the new state of the art for classification and detection in the ILSVRC 2014. Since there exist various deep learning techniques, this review paper is focusing on techniques directly related to DCNNs, especially those needed to understand the architecture and techniques employed in GoogLeNet network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.