• Title/Summary/Keyword: deep convolution neural network

Search Result 267, Processing Time 0.022 seconds

Comparison of Region-based CNN Methods for Defects Detection on Metal Surface (금속 표면의 결함 검출을 위한 영역 기반 CNN 기법 비교)

  • Lee, Minki;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.865-870
    • /
    • 2018
  • A machine vision based industrial inspection includes defects detection and classification. Fast inspection is a fundamental problem for many applications of real-time vision systems. It requires little computation time and localizing defects robustly with high accuracy. Deep learning technique have been known not to be suitable for real-time applications. Recently a couple of fast region-based CNN algorithms for object detection are introduced, such as Faster R-CNN, and YOLOv2. We apply these methods for an industrial inspection problem. Three CNN based detection algorithms, VOV based CNN, Faster R-CNN, and YOLOv2, are experimented for defect detection on metal surface. The results for inspection time and various performance indices are compared and analysed.

Feature Extraction on a Periocular Region and Person Authentication Using a ResNet Model (ResNet 모델을 이용한 눈 주변 영역의 특징 추출 및 개인 인증)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1347-1355
    • /
    • 2019
  • Deep learning approach based on convolution neural network (CNN) has extensively studied in the field of computer vision. However, periocular feature extraction using CNN was not well studied because it is practically impossible to collect large volume of biometric data. This study uses the ResNet model which was trained with the ImageNet dataset. To overcome the problem of insufficient training data, we focused on the training of multi-layer perception (MLP) having simple structure rather than training the CNN having complex structure. It first extracts features using the pretrained ResNet model and reduces the feature dimension by principle component analysis (PCA), then trains a MLP classifier. Experimental results with the public periocular dataset UBIPr show that the proposed method is effective in person authentication using periocular region. Especially it has the advantage which can be directly applied for other biometric traits.

Development of Deep Learning-Based House-Tree-Person Test Analysis Model (딥러닝 기반 집-나무-사람 검사 분석 모델의 개발)

  • Cho, Seung-Je;Cho, Geon-Woo;Kim, Young-wook
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.558-561
    • /
    • 2021
  • 심리학에서 사람의 심리 상태를 알아보기 위해 사용되는 검사 방법 중, 집-나무-사람 검사(HTP Test)는 피실험자가 그린 집, 나무, 사람을 포함하는 그림을 사용하여 피실험자의 심리를 분석하는 투영 검사법이다. 본 논문에서는 딥러닝 모델을 이용해 HTP Test 에 사용되는 그림을 분석하는 시스템을 제안하며, 성능 평가를 통해 심리학에서의 딥러닝 모델 적용 가능성을 확인한다. 또한 그림 데이터 분석에 적합한 사전 훈련 모델을 개발하기 위해, ImageNet 과 스케치 데이터셋으로 사전 훈련하여 성능을 비교한다. 본 논문에서 제안하는 시스템은 크게 감정 분석을 위한 이미지 객체 추출부, 추출된 객체로 피실험자의 감정을 분류하는 감정 분류부로 구성되어 있다. 객체 추출과 이미지 분류 모두 CNN(Convolution Neural Network) 기반의 딥러닝 모델을 사용하며, 이미지 분류 모델은 서로 다른 데이터셋으로 모델을 사전 훈련한 후, 훈련 데이터셋으로 전이 학습하여 모델의 성능을 비교한다. 그림 심리 분석을 위한 HTP test 스케치 데이터셋은, HTP Test 와 동일하게 피실험자가 3 개 클래스의 집, 나무, 사람의 그림을 그려 자체 수집하였다.

Web Application for Creating Emotional ID Photos using Deep Learning (딥러닝을 활용한 감성 증명사진 제작 웹 애플리케이션)

  • Kim, Do Young;Kang, In Yeong;Kim, Yeon Su;Park, Goo man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1261-1264
    • /
    • 2022
  • 최근 본인에게 어울리는 색상을 배경으로 촬영하는 감성 증명사진이 유행하고 있다. 개인마다 퍼스널 컬러를 찾아 배경색에 적용하는 것은 시간, 비용, 인력적으로 어려움이 있으므로 자동으로 개인에 따른 배경색을 찾아서 사진을 합성하여 감성 증명사진을 제작해 주는 딥러닝 기반 시스템을 구축하였다. 본 논문에서는 Convolution Neural Network 를 기반으로 한 딥러닝 기술을 이용해 Image Matting 과 Multi-Label Classification 을 수행하여 기존 감성 증명사진들을 학습하여 모델을 구축하였으며, 해당 시스템으로 사용자에게 새로운 배경색이 적용된 감성 증명사진을 제공하는 웹 애플리케이션을 제안한다.

  • PDF

Developing a Website to Detect Laundry and Recommend Washing Method (세탁물 인식 및 세탁 방법 추천 웹사이트 개발)

  • Cho Kyu Cheol;Park Sang Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.403-404
    • /
    • 2023
  • 옷감의 종류에 따른 올바른 세탁 방법이 존재하는데, 이를 따르지 않고 세탁을 하게 되면 옷이 금방 손상된다. 이러한 잘못된 세탁 방법으로 세탁하여 옷이 손상되는 문제점을 해소하고자 세탁물 인식 및 세탁 방법제공 웹사이트를 제작하였다. 개발된 웹사이트는 사전에 학습된 모델을 바탕으로 사용자의 세탁물 이미지를 인식하여 예측 결과에 따른 세탁 방법을 제공하며 이를 통해 사용자는 성분이 불분명한 옷감에 대한 정보와 세탁 방법을 얻을 수 있다.

  • PDF

Segmentation-Based Depth Map Adjustment for Improved Grasping Pose Detection (물체 파지점 검출 향상을 위한 분할 기반 깊이 지도 조정)

  • Hyunsoo Shin;Muhammad Raheel Afzal;Sungon Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Robotic grasping in unstructured environments poses a significant challenge, demanding precise estimation of gripping positions for diverse and unknown objects. Generative Grasping Convolution Neural Network (GG-CNN) can estimate the position and direction that can be gripped by a robot gripper for an unknown object based on a three-dimensional depth map. Since GG-CNN uses only a depth map as an input, the precision of the depth map is the most critical factor affecting the result. To address the challenge of depth map precision, we integrate the Segment Anything Model renowned for its robust zero-shot performance across various segmentation tasks. We adjust the components corresponding to the segmented areas in the depth map aligned through external calibration. The proposed method was validated on the Cornell dataset and SurgicalKit dataset. Quantitative analysis compared to existing methods showed a 49.8% improvement with the dataset including surgical instruments. The results highlight the practical importance of our approach, especially in scenarios involving thin and metallic objects.

Comparison of Deep Learning-based CNN Models for Crack Detection (콘크리트 균열 탐지를 위한 딥 러닝 기반 CNN 모델 비교)

  • Seol, Dong-Hyeon;Oh, Ji-Hoon;Kim, Hong-Jin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.113-120
    • /
    • 2020
  • The purpose of this study is to compare the models of Deep Learning-based Convolution Neural Network(CNN) for concrete crack detection. The comparison models are AlexNet, GoogLeNet, VGG16, VGG19, ResNet-18, ResNet-50, ResNet-101, and SqueezeNet which won ImageNet Large Scale Visual Recognition Challenge(ILSVRC). To train, validate and test these models, we constructed 3000 training data and 12000 validation data with 256×256 pixel resolution consisting of cracked and non-cracked images, and constructed 5 test data with 4160×3120 pixel resolution consisting of concrete images with crack. In order to increase the efficiency of the training, transfer learning was performed by taking the weight from the pre-trained network supported by MATLAB. From the trained network, the validation data is classified into crack image and non-crack image, yielding True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), and 6 performance indicators, False Negative Rate (FNR), False Positive Rate (FPR), Error Rate, Recall, Precision, Accuracy were calculated. The test image was scanned twice with a sliding window of 256×256 pixel resolution to classify the cracks, resulting in a crack map. From the comparison of the performance indicators and the crack map, it was concluded that VGG16 and VGG19 were the most suitable for detecting concrete cracks.

A Novel RGB Channel Assimilation for Hyperspectral Image Classification using 3D-Convolutional Neural Network with Bi-Long Short-Term Memory

  • M. Preethi;C. Velayutham;S. Arumugaperumal
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.177-186
    • /
    • 2023
  • Hyperspectral imaging technology is one of the most efficient and fast-growing technologies in recent years. Hyperspectral image (HSI) comprises contiguous spectral bands for every pixel that is used to detect the object with significant accuracy and details. HSI contains high dimensionality of spectral information which is not easy to classify every pixel. To confront the problem, we propose a novel RGB channel Assimilation for classification methods. The color features are extracted by using chromaticity computation. Additionally, this work discusses the classification of hyperspectral image based on Domain Transform Interpolated Convolution Filter (DTICF) and 3D-CNN with Bi-directional-Long Short Term Memory (Bi-LSTM). There are three steps for the proposed techniques: First, HSI data is converted to RGB images with spatial features. Before using the DTICF, the RGB images of HSI and patch of the input image from raw HSI are integrated. Afterward, the pair features of spectral and spatial are excerpted using DTICF from integrated HSI. Those obtained spatial and spectral features are finally given into the designed 3D-CNN with Bi-LSTM framework. In the second step, the excerpted color features are classified by 2D-CNN. The probabilistic classification map of 3D-CNN-Bi-LSTM, and 2D-CNN are fused. In the last step, additionally, Markov Random Field (MRF) is utilized for improving the fused probabilistic classification map efficiently. Based on the experimental results, two different hyperspectral images prove that novel RGB channel assimilation of DTICF-3D-CNN-Bi-LSTM approach is more important and provides good classification results compared to other classification approaches.

Low Resolution Infrared Image Deep Convolution Neural Network for Embedded System

  • Hong, Yong-hee;Jin, Sang-hun;Kim, Dae-hyeon;Jhee, Ho-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, we propose reinforced VGG style network structure for low performance embedded system to classify low resolution infrared image. The combination of reinforced VGG style network structure and global average pooling makes lower computational complexity and higher accuracy. The proposed method classify the synthesize image which have 9 class 3,723,328ea images made from OKTAL-SE tool. The reinforced VGG style network structure composed of 4 filters on input and 16 filters on output from max pooling layer shows about 34% lower computational complexity and about 2.4% higher accuracy then the first parameter minimized network structure made for embedded system composed of 8 filters on input and 8 filters on output from max pooling layer. Finally we get 96.1% accuracy model. Additionally we confirmed the about 31% lower inference lead time in ported C code.

A DDoS Attack Detection Technique through CNN Model in Software Define Network (소프트웨어-정의 네트워크에서 CNN 모델을 이용한 DDoS 공격 탐지 기술)

  • Ko, Kwang-Man
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.605-610
    • /
    • 2020
  • Software Defined Networking (SDN) is setting the standard for the management of networks due to its scalability, flexibility and functionality to program the network. The Distributed Denial of Service (DDoS) attack is most widely used to attack the SDN controller to bring down the network. Different methodologies have been utilized to detect DDoS attack previously. In this paper, first the dataset is obtained by Kaggle with 84 features, and then according to the rank, the 20 highest rank features are selected using Permutation Importance Algorithm. Then, the datasets are trained and tested with Convolution Neural Network (CNN) classifier model by utilizing deep learning techniques. Our proposed solution has achieved the best results, which will allow the critical systems which need more security to adopt and take full advantage of the SDN paradigm without compromising their security.