• Title/Summary/Keyword: deep convolution neural network

Search Result 267, Processing Time 0.034 seconds

Radar rainfall prediction based on deep learning considering temporal consistency (시간 연속성을 고려한 딥러닝 기반 레이더 강우예측)

  • Shin, Hongjoon;Yoon, Seongsim;Choi, Jaemin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, we tried to improve the performance of the existing U-net-based deep learning rainfall prediction model, which can weaken the meaning of time series order. For this, ConvLSTM2D U-Net structure model considering temporal consistency of data was applied, and we evaluated accuracy of the ConvLSTM2D U-Net model using a RainNet model and an extrapolation-based advection model. In addition, we tried to improve the uncertainty in the model training process by performing learning not only with a single model but also with 10 ensemble models. The trained neural network rainfall prediction model was optimized to generate 10-minute advance prediction data using four consecutive data of the past 30 minutes from the present. The results of deep learning rainfall prediction models are difficult to identify schematically distinct differences, but with ConvLSTM2D U-Net, the magnitude of the prediction error is the smallest and the location of rainfall is relatively accurate. In particular, the ensemble ConvLSTM2D U-Net showed high CSI, low MAE, and a narrow error range, and predicted rainfall more accurately and stable prediction performance than other models. However, the prediction performance for a specific point was very low compared to the prediction performance for the entire area, and the deep learning rainfall prediction model also had limitations. Through this study, it was confirmed that the ConvLSTM2D U-Net neural network structure to account for the change of time could increase the prediction accuracy, but there is still a limitation of the convolution deep neural network model due to spatial smoothing in the strong rainfall region or detailed rainfall prediction.

A Korean speech recognition based on conformer (콘포머 기반 한국어 음성인식)

  • Koo, Myoung-Wan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.488-495
    • /
    • 2021
  • We propose a speech recognition system based on conformer. Conformer is known to be convolution-augmented transformer, which combines transfer model for capturing global information with Convolution Neural Network (CNN) for exploiting local feature effectively. The baseline system is developed to be a transfer-based speech recognition using Long Short-Term Memory (LSTM)-based language model. The proposed system is a system which uses conformer instead of transformer with transformer-based language model. When Electronics and Telecommunications Research Institute (ETRI) speech corpus in AI-Hub is used for our evaluation, the proposed system yields 5.7 % of Character Error Rate (CER) while the baseline system results in 11.8 % of CER. Even though speech corpus is extended into other domain of AI-hub such as NHNdiguest speech corpus, the proposed system makes a robust performance for two domains. Throughout those experiments, we can prove a validation of the proposed system.

LeafNet: Plants Segmentation using CNN (LeafNet: 합성곱 신경망을 이용한 식물체 분할)

  • Jo, Jeong Won;Lee, Min Hye;Lee, Hong Ro;Chung, Yong Suk;Baek, Jeong Ho;Kim, Kyung Hwan;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Plant phenomics is a technique for observing and analyzing morphological features in order to select plant varieties of excellent traits. The conventional methods is difficult to apply to the phenomics system. because the color threshold value must be manually changed according to the detection target. In this paper, we propose the convolution neural network (CNN) structure that can automatically segment plants from the background for the phenomics system. The LeafNet consists of nine convolution layers and a sigmoid activation function for determining the presence of plants. As a result of the learning using the LeafNet, we obtained a precision of 98.0% and a recall rate of 90.3% for the plant seedlings images. This confirms the applicability of the phenomics system.

Real-time 3D Pose Estimation of Both Human Hands via RGB-Depth Camera and Deep Convolutional Neural Networks (RGB-Depth 카메라와 Deep Convolution Neural Networks 기반의 실시간 사람 양손 3D 포즈 추정)

  • Park, Na Hyeon;Ji, Yong Bin;Gi, Geon;Kim, Tae Yeon;Park, Hye Min;Kim, Tae-Seong
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.686-689
    • /
    • 2018
  • 3D 손 포즈 추정(Hand Pose Estimation, HPE)은 스마트 인간 컴퓨터 인터페이스를 위해서 중요한 기술이다. 이 연구에서는 딥러닝 방법을 기반으로 하여 단일 RGB-Depth 카메라로 촬영한 양손의 3D 손 자세를 실시간으로 인식하는 손 포즈 추정 시스템을 제시한다. 손 포즈 추정 시스템은 4단계로 구성된다. 첫째, Skin Detection 및 Depth cutting 알고리즘을 사용하여 양손을 RGB와 깊이 영상에서 감지하고 추출한다. 둘째, Convolutional Neural Network(CNN) Classifier는 오른손과 왼손을 구별하는데 사용된다. CNN Classifier 는 3개의 convolution layer와 2개의 Fully-Connected Layer로 구성되어 있으며, 추출된 깊이 영상을 입력으로 사용한다. 셋째, 학습된 CNN regressor는 추출된 왼쪽 및 오른쪽 손의 깊이 영상에서 손 관절을 추정하기 위해 다수의 Convolutional Layers, Pooling Layers, Fully Connected Layers로 구성된다. CNN classifier와 regressor는 22,000개 깊이 영상 데이터셋으로 학습된다. 마지막으로, 각 손의 3D 손 자세는 추정된 손 관절 정보로부터 재구성된다. 테스트 결과, CNN classifier는 오른쪽 손과 왼쪽 손을 96.9%의 정확도로 구별할 수 있으며, CNN regressor는 형균 8.48mm의 오차 범위로 3D 손 관절 정보를 추정할 수 있다. 본 연구에서 제안하는 손 포즈 추정 시스템은 가상 현실(virtual reality, VR), 증강 현실(Augmented Reality, AR) 및 융합 현실 (Mixed Reality, MR) 응용 프로그램을 포함한 다양한 응용 분야에서 사용할 수 있다.

Segmentation of Mammography Breast Images using Automatic Segmen Adversarial Network with Unet Neural Networks

  • Suriya Priyadharsini.M;J.G.R Sathiaseelan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.151-160
    • /
    • 2023
  • Breast cancer is the most dangerous and deadly form of cancer. Initial detection of breast cancer can significantly improve treatment effectiveness. The second most common cancer among Indian women in rural areas. Early detection of symptoms and signs is the most important technique to effectively treat breast cancer, as it enhances the odds of receiving an earlier, more specialist care. As a result, it has the possible to significantly improve survival odds by delaying or entirely eliminating cancer. Mammography is a high-resolution radiography technique that is an important factor in avoiding and diagnosing cancer at an early stage. Automatic segmentation of the breast part using Mammography pictures can help reduce the area available for cancer search while also saving time and effort compared to manual segmentation. Autoencoder-like convolutional and deconvolutional neural networks (CN-DCNN) were utilised in previous studies to automatically segment the breast area in Mammography pictures. We present Automatic SegmenAN, a unique end-to-end adversarial neural network for the job of medical image segmentation, in this paper. Because image segmentation necessitates extensive, pixel-level labelling, a standard GAN's discriminator's single scalar real/fake output may be inefficient in providing steady and appropriate gradient feedback to the networks. Instead of utilising a fully convolutional neural network as the segmentor, we suggested a new adversarial critic network with a multi-scale L1 loss function to force the critic and segmentor to learn both global and local attributes that collect long- and short-range spatial relations among pixels. We demonstrate that an Automatic SegmenAN perspective is more up to date and reliable for segmentation tasks than the state-of-the-art U-net segmentation technique.

A Study on Sound Recognition System Based on 2-D Transformation and CNN Deep Learning (2차원 변환과 CNN 딥러닝 기반 음향 인식 시스템에 관한 연구)

  • Ha, Tae Min;Cho, Seongwon;Tra, Ngo Luong Thanh;Thanh, Do Chi;Lee, Keeseong
    • Smart Media Journal
    • /
    • v.11 no.1
    • /
    • pp.31-37
    • /
    • 2022
  • This paper proposes a study on applying signal processing and deep learning for sound recognition that detects sounds commonly heard in daily life (Screaming, Clapping, Crowd_clapping, Car_passing_by and Back_ground, etc.). In the proposed sound recognition, several techniques related to the spectrum of sound waves, augmentation of sound data, ensemble learning for various predictions, convolutional neural networks (CNN) deep learning, and two-dimensional (2-D) data are used for improving the recognition accuracy. The proposed sound recognition technology shows that it can accurately recognize various sounds through experiments.

Animal Fur Recognition Algorithm Based on Feature Fusion Network

  • Liu, Peng;Lei, Tao;Xiang, Qian;Wang, Zexuan;Wang, Jiwei
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • China is a big country in animal fur industry. The total production and consumption of fur are increasing year by year. However, the recognition of fur in the fur production process still mainly relies on the visual identification of skilled workers, and the stability and consistency of products cannot be guaranteed. In response to this problem, this paper proposes a feature fusion-based animal fur recognition network on the basis of typical convolutional neural network structure, relying on rapidly developing deep learning techniques. This network superimposes texture feature - the most prominent feature of fur image - into the channel dimension of input image. The output feature map of the first layer convolution is inverted to obtain the inverted feature map and concat it into the original output feature map, then Leaky ReLU is used for activation, which makes full use of the texture information of fur image and the inverted feature information. Experimental results show that the algorithm improves the recognition accuracy by 9.08% on Fur_Recognition dataset and 6.41% on CIFAR-10 dataset. The algorithm in this paper can change the current situation that fur recognition relies on manual visual method to classify, and can lay foundation for improving the efficiency of fur production technology.

Handwriting Thai Digit Recognition Using Convolution Neural Networks (다양한 컨볼루션 신경망을 이용한 태국어 숫자 인식)

  • Onuean, Athita;Jung, Hanmin;Kim, Taehong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.15-17
    • /
    • 2021
  • Handwriting recognition research is mainly focused on deep learning techniques and has achieved a great performance in the last few years. Especially, handwritten Thai digit recognition has been an important research area including generic digital numerical information, such as Thai official government documents and receipts. However, it becomes also a challenging task for a long time. For resolving the unavailability of a large Thai digit dataset, this paper constructs our dataset and learns them with some variants of the CNN model; Decision tree, K-nearest neighbors, Alexnet, LaNet-5, and VGG (11,13,16,19). The experimental results using the accuracy metric show the maximum accuracy of 98.29% when using VGG 13 with batch normalization.

  • PDF

FGW-FER: Lightweight Facial Expression Recognition with Attention

  • Huy-Hoang Dinh;Hong-Quan Do;Trung-Tung Doan;Cuong Le;Ngo Xuan Bach;Tu Minh Phuong;Viet-Vu Vu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2505-2528
    • /
    • 2023
  • The field of facial expression recognition (FER) has been actively researched to improve human-computer interaction. In recent years, deep learning techniques have gained popularity for addressing FER, with numerous studies proposing end-to-end frameworks that stack or widen significant convolutional neural network layers. While this has led to improved performance, it has also resulted in larger model sizes and longer inference times. To overcome this challenge, our work introduces a novel lightweight model architecture. The architecture incorporates three key factors: Depth-wise Separable Convolution, Residual Block, and Attention Modules. By doing so, we aim to strike a balance between model size, inference speed, and accuracy in FER tasks. Through extensive experimentation on popular benchmark FER datasets, our proposed method has demonstrated promising results. Notably, it stands out due to its substantial reduction in parameter count and faster inference time, while maintaining accuracy levels comparable to other lightweight models discussed in the existing literature.

Lightweight Single Image Super-Resolution Convolution Neural Network in Portable Device

  • Wang, Jin;Wu, Yiming;He, Shiming;Sharma, Pradip Kumar;Yu, Xiaofeng;Alfarraj, Osama;Tolba, Amr
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4065-4083
    • /
    • 2021
  • Super-resolution can improve the clarity of low-resolution (LR) images, which can increase the accuracy of high-level compute vision tasks. Portable devices have low computing power and storage performance. Large-scale neural network super-resolution methods are not suitable for portable devices. In order to save the computational cost and the number of parameters, Lightweight image processing method can improve the processing speed of portable devices. Therefore, we propose the Enhanced Information Multiple Distillation Network (EIMDN) to adapt lower delay and cost. The EIMDN takes feedback mechanism as the framework and obtains low level features through high level features. Further, we replace the feature extraction convolution operation in Information Multiple Distillation Block (IMDB), with Ghost module, and propose the Enhanced Information Multiple Distillation Block (EIMDB) to reduce the amount of calculation and the number of parameters. Finally, coordinate attention (CA) is used at the end of IMDB and EIMDB to enhance the important information extraction from Spaces and channels. Experimental results show that our proposed can achieve convergence faster with fewer parameters and computation, compared with other lightweight super-resolution methods. Under the condition of higher peak signal-to-noise ratio (PSNR) and higher structural similarity (SSIM), the performance of network reconstruction image texture and target contour is significantly improved.