• Title/Summary/Keyword: deep convolution neural network

Search Result 267, Processing Time 0.027 seconds

An Enhancement Method of Document Restoration Capability using Encryption and DnCNN (암호화와 DnCNN을 활용한 문서 복원능력 향상에 관한 연구)

  • Jang, Hyun-Hee;Ha, Sung-Jae;Cho, Gi-Hwan
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.79-84
    • /
    • 2022
  • This paper presents an enhancement method of document restoration capability which is robust for security, loss, and contamination, It is based on two methods, that is, encryption and DnCNN(DeNoise Convolution Neural Network). In order to implement this encryption method, a mathematical model is applied as a spatial frequency transfer function used in optics of 2D image information. Then a method is proposed with optical interference patterns as encryption using spatial frequency transfer functions and using mathematical variables of spatial frequency transfer functions as ciphers. In addition, by applying the DnCNN method which is bsed on deep learning technique, the restoration capability is enhanced by removing noise. With an experimental evaluation, with 65% information loss, by applying Pre-Training DnCNN Deep Learning, the peak signal-to-noise ratio (PSNR) shows 11% or more superior in compared to that of the spatial frequency transfer function only. In addition, it is confirmed that the characteristic of CC(Correlation Coefficient) is enhanced by 16% or more.

Development of the Demand Forecasting and Product Recommendation Method to Support the Small and Medium Distribution Companies based on the Product Recategorization (중소유통기업지원을 위한 상품 카테고리 재분류 기반의 수요예측 및 상품추천 방법론 개발)

  • Sangil Lee;Yeong-WoongYu;Dong-Gil Na
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.155-167
    • /
    • 2024
  • Distribution and logistics industries contribute some of the biggest GDP(gross domestic product) in South Korea and the number of related companies are quarter of the total number of industries in the country. The number of retail tech companies are quickly increased due to the acceleration of the online and untact shopping trend. Furthermore, major distribution and logistics companies try to achieve integrated data management with the fulfillment process. In contrast, small and medium distribution companies still lack of the capacity and ability to develop digital innovation and smartization. Therefore, in this paper, a deep learning-based demand forecasting & recommendation model is proposed to improve business competitiveness. The proposed model is developed based on real sales transaction data to predict future demand for each product. The proposed model consists of six deep learning models, which are MLP(multi-layers perception), CNN(convolution neural network), RNN(recurrent neural network), LSTM(long short term memory), Conv1D-BiLSTM(convolution-long short term memory) for demand forecasting and collaborative filtering for the recommendation. Each model provides the best prediction result for each product and recommendation model can recommend best sales product among companies own sales list as well as competitor's item list. The proposed demand forecasting model is expected to improve the competitiveness of the small and medium-sized distribution and logistics industry.

A Study on Autonomous Cavitation Image Recognition Using Deep Learning Technology (딥러닝 기술을 이용한 캐비테이션 자동인식에 대한 연구)

  • Ji, Bahan;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.105-111
    • /
    • 2021
  • The main source of underwater radiated noise of ships is cavitation generated by propeller blades. After the Cavitation Inception Speed (CIS), noise level at all frequencies increases severely. In determining the CIS, it is based on the results observed with the naked eye during the model test, however accuracy and consistency of CIS values are becoming practical issues. This study was carried out with the aim of developing a technology that can automatically recognize cavitation images using deep learning technique based on a Convolutional Neural Network (CNN). Model tests on a three-dimensional hydrofoil were conducted at a cavitation tunnel, and tip vortex cavitation was strictly observed using a high-speed camera to obtain analysis data. The results show that this technique can be used to quantitatively evaluate not only the CIS, but also the amount and rate of cavitation from recorded images.

Mushroom Image Recognition using Convolutional Neural Network and Transfer Learning (컨볼루션 신경망과 전이 학습을 이용한 버섯 영상 인식)

  • Kang, Euncheol;Han, Yeongtae;Oh, Il-Seok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.53-57
    • /
    • 2018
  • A poisoning accident is often caused by a situation in which people eat poisonous mushrooms because they cannot distinguish between edible mushrooms and poisonous mushrooms. In this paper, we propose an automatic mushroom recognition system by using the convolutional neural network. We collected 1478 mushroom images of 38 species using image crawling, and used the dataset for learning the convolutional neural network. A comparison experiment using AlexNet, VGGNet, and GoogLeNet was performed using the collected datasets, and a comparison experiment using a class number expansion and a fine-tuning technique for transfer learning were performed. As a result of our experiment, we achieve 82.63% top-1 accuracy and 96.84% top-5 accuracy on test set of our dataset.

A Car Plate Area Detection System Using Deep Convolution Neural Network (딥 컨볼루션 신경망을 이용한 자동차 번호판 영역 검출 시스템)

  • Jeong, Yunju;Ansari, Israfil;Shim, Jaechang;Lee, Jeonghwan
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1166-1174
    • /
    • 2017
  • In general, the detection of the vehicle license plate is a previous step of license plate recognition and has been actively studied for several decades. In this paper, we propose an algorithm to detect a license plate area of a moving vehicle from a video captured by a fixed camera installed on the road using the Convolution Neural Network (CNN) technology. First, license plate images and non-license plate images are applied to a previously learned CNN model (AlexNet) to extract and classify features. Then, after detecting the moving vehicle in the video, CNN detects the license plate area by comparing the features of the license plate region with the features of the license plate area. Experimental result shows relatively good performance in various environments such as incomplete lighting, noise due to rain, and low resolution. In addition, to protect personal information this proposed system can also be used independently to detect the license plate area and hide that area to secure the public's personal information.

Detecting Numeric and Character Areas of Low-quality License Plate Images using YOLOv4 Algorithm (YOLOv4 알고리즘을 이용한 저품질 자동차 번호판 영상의 숫자 및 문자영역 검출)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, research on license plate recognition, which is a core technology of an intelligent transportation system(ITS), is being actively conducted. In this paper, we propose a method to extract numbers and characters from low-quality license plate images by applying the YOLOv4 algorithm. YOLOv4 is a one-stage object detection method using convolution neural network including BACKBONE, NECK, and HEAD parts. It is a method of detecting objects in real time rather than the previous two-stage object detection method such as the faster R-CNN. In this paper, we studied a method to directly extract number and character regions from low-quality license plate images without additional edge detection and image segmentation processes. In order to evaluate the performance of the proposed method we experimented with 500 license plate images. In this experiment, 350 images were used for training and the remaining 150 images were used for the testing process. Computer simulations show that the mean average precision of detecting number and character regions on vehicle license plates was about 93.8%.

Development of ResNet based Crop Growth Stage Estimation Model (ResNet 기반 작물 생육단계 추정 모델 개발)

  • Park, Jun;Kim, June-Yeong;Park, Sung-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.53-62
    • /
    • 2022
  • Due to the accelerated global warming phenomenon after industrialization, the frequency of changes in the existing environment and abnormal climate is increasing. Agriculture is an industry that is very sensitive to climate change, and global warming causes problems such as reducing crop yields and changing growing regions. In addition, environmental changes make the growth period of crops irregular, making it difficult for even experienced farmers to easily estimate the growth stage of crops, thereby causing various problems. Therefore, in this paper, we propose a CNN model for estimating the growth stage of crops. The proposed model was a model that modified the pooling layer of ResNet, and confirmed the accuracy of higher performance than the growth stage estimation of the ResNet and DenseNet models.

Object Detection and Localization on Map using Multiple Camera and Lidar Point Cloud

  • Pansipansi, Leonardo John;Jang, Minseok;Lee, Yonsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.422-424
    • /
    • 2021
  • In this paper, it leads the approach of fusing multiple RGB cameras for visual objects recognition based on deep learning with convolution neural network and 3D Light Detection and Ranging (LiDAR) to observe the environment and match into a 3D world in estimating the distance and position in a form of point cloud map. The goal of perception in multiple cameras are to extract the crucial static and dynamic objects around the autonomous vehicle, especially the blind spot which assists the AV to navigate according to the goal. Numerous cameras with object detection might tend slow-going the computer process in real-time. The computer vision convolution neural network algorithm to use for eradicating this problem use must suitable also to the capacity of the hardware. The localization of classified detected objects comes from the bases of a 3D point cloud environment. But first, the LiDAR point cloud data undergo parsing, and the used algorithm is based on the 3D Euclidean clustering method which gives an accurate on localizing the objects. We evaluated the method using our dataset that comes from VLP-16 and multiple cameras and the results show the completion of the method and multi-sensor fusion strategy.

  • PDF

Development of Convolutional Neural Network Basic Practice Cases (합성곱 신경망 기초 실습 사례 개발)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.279-285
    • /
    • 2022
  • In this paper, as a liberal arts course for non-majors, we developed a basic practice case for convolutional neural networks, which is essential for designing a basic convolutional neural network course curriculum. The developed practice case focuses on understanding the working principle of the convolutional neural network and uses a spreadsheet to check the entire visualized process. The developed practice case consisted of generating supervised learning method image training data, implementing the input layer, convolution layer (convolutional layer), pooling layer, and output layer sequentially, and testing the performance of the convolutional neural network on new data. By extending the practice cases developed in this paper, the number of images to be recognized can be expanded, or basic practice cases can be made to create a convolutional neural network that increases the compression rate for high-quality images. Therefore, it can be said that the utility of this convolutional neural network basic practice case is high.

DeepPurple : Chess Engine using Deep Learning (딥퍼플 : 딥러닝을 이용한 체스 엔진)

  • Yun, Sung-Hwan;Kim, Young-Ung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.119-124
    • /
    • 2017
  • In 1997, IBM's DeepBlue won the world chess championship, Garry Kasparov, and recently, Google's AlphaGo won all three games against Ke Jie, who was ranked 1st among all human Baduk players worldwide, interest in deep running has increased rapidly. DeepPurple, proposed in this paper, is a AI chess engine based on deep learning. DeepPurple Chess Engine consists largely of Monte Carlo Tree Search and policy network and value network, which are implemented by convolution neural networks. Through the policy network, the next move is predicted and the given situation is calculated through the value network. To select the most beneficial next move Monte Carlo Tree Search is used. The results show that the accuracy and the loss function cost of the policy network is 43% and 1.9. In the case of the value network, the accuracy is 50% and the loss function cost is 1, respectively.