• Title/Summary/Keyword: deep Learning

Search Result 5,795, Processing Time 0.032 seconds

Deep Learning-based Target Masking Scheme for Understanding Meaning of Newly Coined Words

  • Nam, Gun-Min;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.157-165
    • /
    • 2021
  • Recently, studies using deep learning to analyze a large amount of text are being actively conducted. In particular, a pre-trained language model that applies the learning results of a large amount of text to the analysis of a specific domain text is attracting attention. Among various pre-trained language models, BERT(Bidirectional Encoder Representations from Transformers)-based model is the most widely used. Recently, research to improve the performance of analysis is being conducted through further pre-training using BERT's MLM(Masked Language Model). However, the traditional MLM has difficulties in clearly understands the meaning of sentences containing new words such as newly coined words. Therefore, in this study, we newly propose NTM(Newly coined words Target Masking), which performs masking only on new words. As a result of analyzing about 700,000 movie reviews of portal 'N' by applying the proposed methodology, it was confirmed that the proposed NTM showed superior performance in terms of accuracy of sensitivity analysis compared to the existing random masking.

Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning (딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

Automatic Categorization of Islamic Jurisprudential Legal Questions using Hierarchical Deep Learning Text Classifier

  • AlSabban, Wesam H.;Alotaibi, Saud S.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.281-291
    • /
    • 2021
  • The Islamic jurisprudential legal system represents an essential component of the Islamic religion, that governs many aspects of Muslims' daily lives. This creates many questions that require interpretations by qualified specialists, or Muftis according to the main sources of legislation in Islam. The Islamic jurisprudence is usually classified into branches, according to which the questions can be categorized and classified. Such categorization has many applications in automated question-answering systems, and in manual systems in routing the questions to a specialized Mufti to answer specific topics. In this work we tackle the problem of automatic categorisation of Islamic jurisprudential legal questions using deep learning techniques. In this paper, we build a hierarchical deep learning model that first extracts the question text features at two levels: word and sentence representation, followed by a text classifier that acts upon the question representation. To evaluate our model, we build and release the largest publicly available dataset of Islamic questions and answers, along with their topics, for 52 topic categories. We evaluate different state-of-the art deep learning models, both for word and sentence embeddings, comparing recurrent and transformer-based techniques, and performing extensive ablation studies to show the effect of each model choice. Our hierarchical model is based on pre-trained models, taking advantage of the recent advancement of transfer learning techniques, focused on Arabic language.

Object Classification and Change Detection in Point Clouds Using Deep Learning (포인트 클라우드에서 딥러닝을 이용한 객체 분류 및 변화 탐지)

  • Seo, Hong-Deok;Kim, Eui-Myoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.37-51
    • /
    • 2020
  • With the development of machine learning and deep learning technologies, there has been increasing interest and attempt to apply these technologies to the detection of urban changes. However, the traditional methods of detecting changes and constructing spatial information are still often performed manually by humans, which is costly and time-consuming. Besides, a large number of people are needed to efficiently detect changes in buildings in urban areas. Therefore, in this study, a methodology that can detect changes by classifying road, building, and vegetation objects that are highly utilized in the geospatial information field was proposed by applying deep learning technology to point clouds. As a result of the experiment, roads, buildings, and vegetation were classified with an accuracy of 92% or more, and attributes information of the objects could be automatically constructed through this. In addition, if time-series data is constructed, it is thought that changes can be detected and attributes of existing digital maps can be inspected through the proposed methodology.

Deep Learning in Radiation Oncology

  • Cheon, Wonjoong;Kim, Haksoo;Kim, Jinsung
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.111-123
    • /
    • 2020
  • Deep learning (DL) is a subset of machine learning and artificial intelligence that has a deep neural network with a structure similar to the human neural system and has been trained using big data. DL narrows the gap between data acquisition and meaningful interpretation without explicit programming. It has so far outperformed most classification and regression methods and can automatically learn data representations for specific tasks. The application areas of DL in radiation oncology include classification, semantic segmentation, object detection, image translation and generation, and image captioning. This article tries to understand what is the potential role of DL and what can be more achieved by utilizing it in radiation oncology. With the advances in DL, various studies contributing to the development of radiation oncology were investigated comprehensively. In this article, the radiation treatment process was divided into six consecutive stages as follows: patient assessment, simulation, target and organs-at-risk segmentation, treatment planning, quality assurance, and beam delivery in terms of workflow. Studies using DL were classified and organized according to each radiation treatment process. State-of-the-art studies were identified, and the clinical utilities of those researches were examined. The DL model could provide faster and more accurate solutions to problems faced by oncologists. While the effect of a data-driven approach on improving the quality of care for cancer patients is evidently clear, implementing these methods will require cultural changes at both the professional and institutional levels. We believe this paper will serve as a guide for both clinicians and medical physicists on issues that need to be addressed in time.

Analysis of Deep Learning Model Vulnerability According to Input Mutation (입력 변이에 따른 딥러닝 모델 취약점 연구 및 검증)

  • Kim, Jaeuk;Park, Leo Hyun;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.51-59
    • /
    • 2021
  • The deep learning model can produce false prediction results due to inputs that deviate from training data through variation, which leads to fatal accidents in areas such as autonomous driving and security. To ensure reliability of the model, the model's coping ability for exceptional situations should be verified through various mutations. However, previous studies were carried out on limited scope of models and used several mutation types without separating them. Based on the CIFAR10 data set, widely used dataset for deep learning verification, this study carries out reliability verification for total of six models including various commercialized models and their additional versions. To this end, six types of input mutation algorithms that may occur in real life are applied individually with their various parameters to the dataset to compare the accuracy of the models for each of them to rigorously identify vulnerabilities of the models associated with a particular mutation type.

Deep Learning Frameworks for Cervical Mobilization Based on Website Images

  • Choi, Wansuk;Heo, Seoyoon
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.1
    • /
    • pp.2261-2266
    • /
    • 2021
  • Background: Deep learning related research works on website medical images have been actively conducted in the field of health care, however, articles related to the musculoskeletal system have been introduced insufficiently, deep learning-based studies on classifying orthopedic manual therapy images would also just be entered. Objectives: To create a deep learning model that categorizes cervical mobilization images and establish a web application to find out its clinical utility. Design: Research and development. Methods: Three types of cervical mobilization images (central posteroanterior (CPA) mobilization, unilateral posteroanterior (UPA) mobilization, and anteroposterior (AP) mobilization) were obtained using functions of 'Download All Images' and a web crawler. Unnecessary images were filtered from 'Auslogics Duplicate File Finder' to obtain the final 144 data (CPA=62, UPA=46, AP=36). Training classified into 3 classes was conducted in Teachable Machine. The next procedures, the trained model source was uploaded to the web application cloud integrated development environment (https://ide.goorm.io/) and the frame was built. The trained model was tested in three environments: Teachable Machine File Upload (TMFU), Teachable Machine Webcam (TMW), and Web Service webcam (WSW). Results: In three environments (TMFU, TMW, WSW), the accuracy of CPA mobilization images was 81-96%. The accuracy of the UPA mobilization image was 43~94%, and the accuracy deviation was greater than that of CPA. The accuracy of the AP mobilization image was 65-75%, and the deviation was not large compared to the other groups. In the three environments, the average accuracy of CPA was 92%, and the accuracy of UPA and AP was similar up to 70%. Conclusion: This study suggests that training of images of orthopedic manual therapy using machine learning open software is possible, and that web applications made using this training model can be used clinically.

Detection of Number and Character Area of License Plate Using Deep Learning and Semantic Image Segmentation (딥러닝과 의미론적 영상분할을 이용한 자동차 번호판의 숫자 및 문자영역 검출)

  • Lee, Jeong-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2021
  • License plate recognition plays a key role in intelligent transportation systems. Therefore, it is a very important process to efficiently detect the number and character areas. In this paper, we propose a method to effectively detect license plate number area by applying deep learning and semantic image segmentation algorithm. The proposed method is an algorithm that detects number and text areas directly from the license plate without preprocessing such as pixel projection. The license plate image was acquired from a fixed camera installed on the road, and was used in various real situations taking into account both weather and lighting changes. The input images was normalized to reduce the color change, and the deep learning neural networks used in the experiment were Vgg16, Vgg19, ResNet18, and ResNet50. To examine the performance of the proposed method, we experimented with 500 license plate images. 300 sheets were used for learning and 200 sheets were used for testing. As a result of computer simulation, it was the best when using ResNet50, and 95.77% accuracy was obtained.

Training Method for Enhancing Classification Accuracy of Kuzushiji-MNIST/49 using Deep Learning based on CNN (CNN기반 딥러닝을 이용한 Kuzushiji-MNIST/49 분류의 정확도 향상을 위한 학습 방안)

  • Park, Byung-Seo;Lee, Sungyoung;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.355-363
    • /
    • 2020
  • In this paper, we propose a deep learning training method for accurately classifying Kuzushiji-MNIST and Kuzushiji-49 datasets for ancient and medieval Japanese characters. We analyze the latest convolutional neural network networks through experiments to select the most suitable network, and then use the networks to select the number of training to classify Kuzushiji-MNIST and Kuzushiji-49 datasets. In addition, the training is conducted with high accuracy by applying learning methods such as Mixup and Random Erase. As a result of the training, the accuracy of the proposed method can be shown to be high by 99.75% for MNIST, 99.07% for Kuzushiji-MNIST, and 97.56% for Kuzushiji-49. Through this deep learning-based technology, it is thought to provide a good research base for various researchers who study East Asian and Western history, literature, and culture.

The Effect of Type of Input Image on Accuracy in Classification Using Convolutional Neural Network Model (컨볼루션 신경망 모델을 이용한 분류에서 입력 영상의 종류가 정확도에 미치는 영향)

  • Kim, Min Jeong;Kim, Jung Hun;Park, Ji Eun;Jeong, Woo Yeon;Lee, Jong Min
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.167-174
    • /
    • 2021
  • The purpose of this study is to classify TIFF images, PNG images, and JPEG images using deep learning, and to compare the accuracy by verifying the classification performance. The TIFF, PNG, and JPEG images converted from chest X-ray DICOM images were applied to five deep neural network models performed in image recognition and classification to compare classification performance. The data consisted of a total of 4,000 X-ray images, which were converted from DICOM images into 16-bit TIFF images and 8-bit PNG and JPEG images. The learning models are CNN models - VGG16, ResNet50, InceptionV3, DenseNet121, and EfficientNetB0. The accuracy of the five convolutional neural network models of TIFF images is 99.86%, 99.86%, 99.99%, 100%, and 99.89%. The accuracy of PNG images is 99.88%, 100%, 99.97%, 99.87%, and 100%. The accuracy of JPEG images is 100%, 100%, 99.96%, 99.89%, and 100%. Validation of classification performance using test data showed 100% in accuracy, precision, recall and F1 score. Our classification results show that when DICOM images are converted to TIFF, PNG, and JPEG images and learned through preprocessing, the learning works well in all formats. In medical imaging research using deep learning, the classification performance is not affected by converting DICOM images into any format.