• Title/Summary/Keyword: deep Learning

Search Result 5,795, Processing Time 0.031 seconds

Improved Deep Learning Algorithm

  • Kim, Byung Joo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 2018
  • Training a very large deep neural network can be painfully slow and prone to overfitting. Many researches have done for overcoming the problem. In this paper, a combination of early stopping and ADAM based deep neural network was presented. This form of deep network is useful for handling the big data because it automatically stop the training before overfitting occurs. Also generalization ability is better than pure deep neural network model.

Classification of Anteroposterior/Lateral Images and Segmentation of the Radius Using Deep Learning in Wrist X-rays Images (손목 관절 단순 방사선 영상에서 딥 러닝을 이용한 전후방 및 측면 영상 분류와 요골 영역 분할)

  • Lee, Gi Pyo;Kim, Young Jae;Lee, Sanglim;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.94-100
    • /
    • 2020
  • The purpose of this study was to present the models for classifying the wrist X-ray images by types and for segmenting the radius automatically in each image using deep learning and to verify the learned models. The data were a total of 904 wrist X-rays with the distal radius fracture, consisting of 472 anteroposterior (AP) and 432 lateral images. The learning model was the ResNet50 model for AP/lateral image classification, and the U-Net model for segmentation of the radius. In the model for AP/lateral image classification, 100.0% was showed in precision, recall, and F1 score and area under curve (AUC) was 1.0. The model for segmentation of the radius showed an accuracy of 99.46%, a sensitivity of 89.68%, a specificity of 99.72%, and a Dice similarity coefficient of 90.05% in AP images and an accuracy of 99.37%, a sensitivity of 88.65%, a specificity of 99.69%, and a Dice similarity coefficient of 86.05% in lateral images. The model for AP/lateral classification and the segmentation model of the radius learned through deep learning showed favorable performances to expect clinical application.

Performance Evaluation of Price-based Input Features in Stock Price Prediction using Tensorflow (텐서플로우를 이용한 주가 예측에서 가격-기반 입력 피쳐의 예측 성능 평가)

  • Song, Yoojeong;Lee, Jae Won;Lee, Jongwoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.11
    • /
    • pp.625-631
    • /
    • 2017
  • The stock price prediction for stock markets remains an unsolved problem. Although there have been various overtures and studies to predict the price of stocks scientifically, it is impossible to predict the future precisely. However, stock price predictions have been a subject of interest in a variety of related fields such as economics, mathematics, physics, and computer science. In this paper, we will study fluctuation patterns of stock prices and predict future trends using the Deep learning. Therefore, this study presents the three deep learning models using Tensorflow, an open source framework in which each learning model accepts different input features. We expand the previous study that used simple price data. We measured the performance of three predictive models increasing the number of priced-based input features. Through this experiment, we measured the performance change of the predictive model depending on the price-based input features. Finally, we compared and analyzed the experiment result to evaluate the impact of the price-based input features in stock price prediction.

Deep Learning based Photo Horizon Correction (딥러닝을 이용한 영상 수평 보정)

  • Hong, Eunbin;Jeon, Junho;Cho, Sunghyun;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.95-103
    • /
    • 2017
  • Horizon correction is a crucial stage for image composition enhancement. In this paper, we propose a deep learning based method for estimating the slanted angle of a photograph and correcting it. To estimate and correct the horizon direction, existing methods use hand-crafted low-level features such as lines, planes, and gradient distributions. However, these methods may not work well on the images that contain no lines or planes. To tackle this limitation and robustly estimate the slanted angle, we propose a convolutional neural network (CNN) based method to estimate the slanted angle by learning more generic features using a huge dataset. In addition, we utilize multiple adaptive spatial pooling layers to extract multi-scale image features for better performance. In the experimental results, we show our CNN-based approach robustly and accurately estimates the slanted angle of an image regardless of the image content, even if the image contains no lines or planes at all.

Fast Detection of Disease in Livestock based on Deep Learning (축사에서 딥러닝을 이용한 질병개체 파악방안)

  • Lee, Woongsup;Kim, Seong Hwan;Ryu, Jongyeol;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1009-1015
    • /
    • 2017
  • Recently, the wide spread of IoT (Internet of Things) based technology enables the accumulation of big biometric data on livestock. The availability of big data allows the application of diverse machine learning based algorithm in the field of agriculture, which significantly enhances the productivity of farms. In this paper, we propose an abnormal livestock detection algorithm based on deep learning, which is the one of the most prominent machine learning algorithm. In our proposed scheme, the livestock are divided into two clusters which are normal and abnormal (disease) whose biometric data has different characteristics. Then a deep neural network is used to classify these two clusters based on the biometric data. By using our proposed scheme, the normal and abnormal livestock can be identified based on big biometric data, even though the detailed stochastic characteristics of biometric data are unknown, which is beneficial to prevent epidemic such as mouth-and-foot disease.

Automatic Classification of Bridge Component based on Deep Learning (딥러닝 기반 교량 구성요소 자동 분류)

  • Lee, Jae Hyuk;Park, Jeong Jun;Yoon, Hyungchul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.239-245
    • /
    • 2020
  • Recently, BIM (Building Information Modeling) are widely being utilized in Construction industry. However, most structures that have been constructed in the past do not have BIM. For structures without BIM, the use of SfM (Structure from Motion) techniques in the 2D image obtained from the camera allows the generation of 3D model point cloud data and BIM to be established. However, since these generated point cloud data do not contain semantic information, it is necessary to manually classify what elements of the structure. Therefore, in this study, deep learning was applied to automate the process of classifying structural components. In the establishment of deep learning network, Inception-ResNet-v2 of CNN (Convolutional Neural Network) structure was used, and the components of bridge structure were learned through transfer learning. As a result of classifying components using the data collected to verify the developed system, the components of the bridge were classified with an accuracy of 96.13 %.

Realization of home appliance classification system using deep learning (딥러닝을 이용한 가전제품 분류 시스템 구현)

  • Son, Chang-Woo;Lee, Sang-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1718-1724
    • /
    • 2017
  • Recently, Smart plugs for real time monitoring of household appliances based on IoT(Internet of Things) have been activated. Through this, consumers are able to save energy by monitoring real-time energy consumption at all times, and reduce power consumption through alarm function based on consumer setting. In this paper, we measure the alternating current from a wall power outlet for real-time monitoring. At this time, the current pattern for each household appliance was classified and it was experimented with deep learning to determine which product works. As a result, we used a cross validation method and a bootstrap verification method in order to the classification performance according to the type of appliances. Also, it is confirmed that the cost function and the learning success rate are the same as the train data and test data.

A Survey on Deep Learning based Face Recognition for User Authentication (사용자 인증을 위한 딥러닝 기반 얼굴인식 기술 동향)

  • Mun, Hyung-Jin;Kim, Gea-Hee
    • Journal of Industrial Convergence
    • /
    • v.17 no.3
    • /
    • pp.23-29
    • /
    • 2019
  • Object recognition distinguish objects which are different from each other. But Face recognition distinguishes Identity of Faces with Similar Patterns. Feature extraction algorithm such as LBP, HOG, Gabor is being replaced with Deep Learning. As the technology that identify individual face with machine learning using Deep Learning Technology is developing, The Face Recognition Technology is being used in various field. In particular, the technology can provide individual and detailed service by being used in various offline environments requiring user identification, such as Smart Mirror. Face Recognition Technology can be developed as the technology that authenticate user easily by device like Smart Mirror and provide service authenticated user. In this paper, we present investigation about Face Recognition among various techniques for user authentication and analysis of Python source case of Face recognition and possibility of various service using Face Recognition Technology.

Thermal Image Processing and Synthesis Technique Using Faster-RCNN (Faster-RCNN을 이용한 열화상 이미지 처리 및 합성 기법)

  • Shin, Ki-Chul;Lee, Jun-Su;Kim, Ju-Sik;Kim, Ju-Hyung;Kwon, Jang-woo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.30-38
    • /
    • 2021
  • In this paper, we propose a method for extracting thermal data from thermal image and improving detection of heating equipment using the data. The main goal is to read the data in bytes from the thermal image file to extract the thermal data and the real image, and to apply the composite image obtained by synthesizing the image and data to the deep learning model to improve the detection accuracy of the heating facility. Data of KHNP was used for evaluation data, and Faster-RCNN is used as a learning model to compare and evaluate deep learning detection performance according to each data group. The proposed method improved on average by 0.17 compared to the existing method in average precision evaluation.As a result, this study attempted to combine national data-based thermal image data and deep learning detection to improve effective data utilization.

Attention Gated FC-DenseNet for Extracting Crop Cultivation Area by Multispectral Satellite Imagery (다중분광밴드 위성영상의 작물재배지역 추출을 위한 Attention Gated FC-DenseNet)

  • Seong, Seon-kyeong;Mo, Jun-sang;Na, Sang-il;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1061-1070
    • /
    • 2021
  • In this manuscript, we tried to improve the performance of the FC-DenseNet by applying an attention gate for the classification of cropping areas. The attention gate module could facilitate the learning of a deep learning model and improve the performance of the model by injecting of spatial/spectral weights to each feature map. Crop classification was performed in the onion and garlic regions using a proposed deep learning model in which an attention gate was added to the skip connection part of FC-DenseNet. Training data was produced using various PlanetScope satellite imagery, and preprocessing was applied to minimize the problem of imbalanced training dataset. As a result of the crop classification, it was verified that the proposed deep learning model can more effectively classify the onion and garlic regions than existing FC-DenseNet algorithm.