• Title/Summary/Keyword: deep Learning

Search Result 5,795, Processing Time 0.038 seconds

Blood glucose prediction using PPG and DNN in dogs - a pilot study (개의 PPG와 DNN를 이용한 혈당 예측 - 선행연구)

  • Cheol-Gu Park;Sang-Ki Choi
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.25-32
    • /
    • 2023
  • This paper is a study to develop a deep neural network (DNN) blood glucose prediction model based on heart rate (HR) and heart rate variability (HRV) data measured by PPG-based sensors. MLP deep learning consists of an input layer, a hidden layer, and an output layer with 11 independent variables. The learning results of the blood glucose prediction model are MAE=0.3781, MSE=0.8518, and RMSE=0.9229, and the coefficient of determination (R2) is 0.9994. The study was able to verify the feasibility of glycemic control using non-blood vital signs using PPG-based digital devices. In conclusion, a standardized method of acquiring and interpreting PPG-based vital signs, a large data set for deep learning, and a study to demonstrate the accuracy of the method may provide convenience and an alternative method for blood glucose management in dogs.

Assessment of a Deep Learning Algorithm for the Detection of Rib Fractures on Whole-Body Trauma Computed Tomography

  • Thomas Weikert;Luca Andre Noordtzij;Jens Bremerich;Bram Stieltjes;Victor Parmar;Joshy Cyriac;Gregor Sommer;Alexander Walter Sauter
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.891-899
    • /
    • 2020
  • Objective: To assess the diagnostic performance of a deep learning-based algorithm for automated detection of acute and chronic rib fractures on whole-body trauma CT. Materials and Methods: We retrospectively identified all whole-body trauma CT scans referred from the emergency department of our hospital from January to December 2018 (n = 511). Scans were categorized as positive (n = 159) or negative (n = 352) for rib fractures according to the clinically approved written CT reports, which served as the index test. The bone kernel series (1.5-mm slice thickness) served as an input for a detection prototype algorithm trained to detect both acute and chronic rib fractures based on a deep convolutional neural network. It had previously been trained on an independent sample from eight other institutions (n = 11455). Results: All CTs except one were successfully processed (510/511). The algorithm achieved a sensitivity of 87.4% and specificity of 91.5% on a per-examination level [per CT scan: rib fracture(s): yes/no]. There were 0.16 false-positives per examination (= 81/510). On a per-finding level, there were 587 true-positive findings (sensitivity: 65.7%) and 307 false-negatives. Furthermore, 97 true rib fractures were detected that were not mentioned in the written CT reports. A major factor associated with correct detection was displacement. Conclusion: We found good performance of a deep learning-based prototype algorithm detecting rib fractures on trauma CT on a per-examination level at a low rate of false-positives per case. A potential area for clinical application is its use as a screening tool to avoid false-negative radiology reports.

Utilization of age information for speaker verification using multi-task learning deep neural networks (멀티태스크 러닝 심층신경망을 이용한 화자인증에서의 나이 정보 활용)

  • Kim, Ju-ho;Heo, Hee-Soo;Jung, Jee-weon;Shim, Hye-jin;Kim, Seung-Bin;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.593-600
    • /
    • 2019
  • The similarity in tones between speakers can lower the performance of speaker verification. To improve the performance of speaker verification systems, we propose a multi-task learning technique using deep neural network to learn speaker information and age information. Multi-task learning can improve generalization performances, because it helps deep neural networks to prevent hidden layers from overfitting into one task. However, we found in experiments that learning of age information does not work well in the process of learning the deep neural network. In order to improve the learning, we propose a method to dynamically change the objective function weights of speaker identification and age estimation in the learning process. Results show the equal error rate based on RSR2015 evaluation data set, 6.91 % for the speaker verification system without using age information, 6.77 % using age information only, and 4.73 % using age information when weight change technique was applied.

Stock Price Direction Prediction Using Convolutional Neural Network: Emphasis on Correlation Feature Selection (합성곱 신경망을 이용한 주가방향 예측: 상관관계 속성선택 방법을 중심으로)

  • Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.21-39
    • /
    • 2020
  • Recently, deep learning has shown high performance in various applications such as pattern analysis and image classification. Especially known as a difficult task in the field of machine learning research, stock market forecasting is an area where the effectiveness of deep learning techniques is being verified by many researchers. This study proposed a deep learning Convolutional Neural Network (CNN) model to predict the direction of stock prices. We then used the feature selection method to improve the performance of the model. We compared the performance of machine learning classifiers against CNN. The classifiers used in this study are as follows: Logistic Regression, Decision Tree, Neural Network, Support Vector Machine, Adaboost, Bagging, and Random Forest. The results of this study confirmed that the CNN showed higher performancecompared with other classifiers in the case of feature selection. The results show that the CNN model effectively predicted the stock price direction by analyzing the embedded values of the financial data

A Study on Attention Mechanism in DeepLabv3+ for Deep Learning-based Semantic Segmentation (딥러닝 기반의 Semantic Segmentation을 위한 DeepLabv3+에서 강조 기법에 관한 연구)

  • Shin, SeokYong;Lee, SangHun;Han, HyunHo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.55-61
    • /
    • 2021
  • In this paper, we proposed a DeepLabv3+ based encoder-decoder model utilizing an attention mechanism for precise semantic segmentation. The DeepLabv3+ is a semantic segmentation method based on deep learning and is mainly used in applications such as autonomous vehicles, and infrared image analysis. In the conventional DeepLabv3+, there is little use of the encoder's intermediate feature map in the decoder part, resulting in loss in restoration process. Such restoration loss causes a problem of reducing segmentation accuracy. Therefore, the proposed method firstly minimized the restoration loss by additionally using one intermediate feature map. Furthermore, we fused hierarchically from small feature map in order to effectively utilize this. Finally, we applied an attention mechanism to the decoder to maximize the decoder's ability to converge intermediate feature maps. We evaluated the proposed method on the Cityscapes dataset, which is commonly used for street scene image segmentation research. Experiment results showed that our proposed method improved segmentation results compared to the conventional DeepLabv3+. The proposed method can be used in applications that require high accuracy.

Deep recurrent neural networks with word embeddings for Urdu named entity recognition

  • Khan, Wahab;Daud, Ali;Alotaibi, Fahd;Aljohani, Naif;Arafat, Sachi
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.90-100
    • /
    • 2020
  • Named entity recognition (NER) continues to be an important task in natural language processing because it is featured as a subtask and/or subproblem in information extraction and machine translation. In Urdu language processing, it is a very difficult task. This paper proposes various deep recurrent neural network (DRNN) learning models with word embedding. Experimental results demonstrate that they improve upon current state-of-the-art NER approaches for Urdu. The DRRN models evaluated include forward and bidirectional extensions of the long short-term memory and back propagation through time approaches. The proposed models consider both language-dependent features, such as part-of-speech tags, and language-independent features, such as the "context windows" of words. The effectiveness of the DRNN models with word embedding for NER in Urdu is demonstrated using three datasets. The results reveal that the proposed approach significantly outperforms previous conditional random field and artificial neural network approaches. The best f-measure values achieved on the three benchmark datasets using the proposed deep learning approaches are 81.1%, 79.94%, and 63.21%, respectively.

A Study of Shiitake Disease and Pest Image Analysis based on Deep Learning (딥러닝 기반 표고버섯 병해충 이미지 분석에 관한 연구)

  • Jo, KyeongHo;Jung, SeHoon;Sim, ChunBo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.50-57
    • /
    • 2020
  • The work that detection and elimination to disease and pest have important in agricultural field because it is directly related to the production of the crops, early detection and treatment of the disease insects. Image classification technology based on traditional computer vision have not been applied in part such as disease and pest because that is falling a accuracy to extraction and classification of feature. In this paper, we proposed model that determine to disease and pest of shiitake based on deep-CNN which have high image recognition performance than exist study. For performance evaluation, we compare evaluation with Alexnet to a proposed deep learning evaluation model. We were compared a proposed model with test data and extend test data. The result, we were confirmed that the proposed model had high performance than Alexnet which approximately 48% and 72% such as test data, approximately 62% and 81% such as extend test data.

Deep Learning-based Analysis of Meat Freshness Measurement (고기 신선도 측정 데이터의 딥러닝 기반 분석)

  • Jang, Aera;Kim, Hey-Jin;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.418-427
    • /
    • 2020
  • The measurement of meat freshness at meat markets is important for the health of consumers. Currently a variety of sensors have been studied for the measurement of the meat freshness. Therefore, the analysis of sensor data is needed for the reduction of measurement errors. In this paper, we analyze the freshness measurement data of ten sensors based on deep learning. The measured data are composed of beef, pork and chicken, whose reliability and noise-robustness are examined by a deep neural network. Further, to search for multiple sensors better than a torrymeter, PCA (principle component analysis) is carried. Then, we validated that the performance of the three sensors outperforms the torrymeter in the experiment.

Gesture-Based Emotion Recognition by 3D-CNN and LSTM with Keyframes Selection

  • Ly, Son Thai;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, emotion recognition has been an interesting and challenging topic. Compared to facial expressions and speech modality, gesture-based emotion recognition has not received much attention with only a few efforts using traditional hand-crafted methods. These approaches require major computational costs and do not offer many opportunities for improvement as most of the science community is conducting their research based on the deep learning technique. In this paper, we propose an end-to-end deep learning approach for classifying emotions based on bodily gestures. In particular, the informative keyframes are first extracted from raw videos as input for the 3D-CNN deep network. The 3D-CNN exploits the short-term spatiotemporal information of gesture features from selected keyframes, and the convolutional LSTM networks learn the long-term feature from the features results of 3D-CNN. The experimental results on the FABO dataset exceed most of the traditional methods results and achieve state-of-the-art results for the deep learning-based technique for gesture-based emotion recognition.

Development of Deep Learning Models for Multi-class Sentiment Analysis (딥러닝 기반의 다범주 감성분석 모델 개발)

  • Syaekhoni, M. Alex;Seo, Sang Hyun;Kwon, Young S.
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.149-160
    • /
    • 2017
  • Sentiment analysis is the process of determining whether a piece of document, text or conversation is positive, negative, neural or other emotion. Sentiment analysis has been applied for several real-world applications, such as chatbot. In the last five years, the practical use of the chatbot has been prevailing in many field of industry. In the chatbot applications, to recognize the user emotion, sentiment analysis must be performed in advance in order to understand the intent of speakers. The specific emotion is more than describing positive or negative sentences. In light of this context, we propose deep learning models for conducting multi-class sentiment analysis for identifying speaker's emotion which is categorized to be joy, fear, guilt, sad, shame, disgust, and anger. Thus, we develop convolutional neural network (CNN), long short term memory (LSTM), and multi-layer neural network models, as deep neural networks models, for detecting emotion in a sentence. In addition, word embedding process was also applied in our research. In our experiments, we have found that long short term memory (LSTM) model performs best compared to convolutional neural networks and multi-layer neural networks. Moreover, we also show the practical applicability of the deep learning models to the sentiment analysis for chatbot.