• Title/Summary/Keyword: deep Learning

Search Result 5,795, Processing Time 0.032 seconds

Autonomous pothole detection using deep region-based convolutional neural network with cloud computing

  • Luo, Longxi;Feng, Maria Q.;Wu, Jianping;Leung, Ryan Y.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.745-757
    • /
    • 2019
  • Road surface deteriorations such as potholes have caused motorists heavy monetary damages every year. However, effective road condition monitoring has been a continuing challenge to road owners. Depth cameras have a small field of view and can be easily affected by vehicle bouncing. Traditional image processing methods based on algorithms such as segmentation cannot adapt to varying environmental and camera scenarios. In recent years, novel object detection methods based on deep learning algorithms have produced good results in detecting typical objects, such as faces, vehicles, structures and more, even in scenarios with changing object distances, camera angles, lighting conditions, etc. Therefore, in this study, a Deep Learning Pothole Detector (DLPD) based on the deep region-based convolutional neural network is proposed for autonomous detection of potholes from images. About 900 images with potholes and road surface conditions are collected and divided into training and testing data. Parameters of the network in the DLPD are calibrated based on sensitivity tests. Then, the calibrated DLPD is trained by the training data and applied to the 215 testing images to evaluate its performance. It is demonstrated that potholes can be automatically detected with high average precision over 93%. Potholes can be differentiated from manholes by training and applying a manhole-pothole classifier which is constructed using the convolutional neural network layers in DLPD. Repeated detection of the same potholes can be prevented through feature matching of the newly detected pothole with previously detected potholes within a small region.

Convolutional Neural Network-Based Automatic Segmentation of Substantia Nigra on Nigrosome and Neuromelanin Sensitive MR Images

  • Kang, Junghwa;Kim, Hyeonha;Kim, Eunjin;Kim, Eunbi;Lee, Hyebin;Shin, Na-young;Nam, Yoonho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.156-163
    • /
    • 2021
  • Recently, neuromelanin and nigrosome imaging techniques have been developed to evaluate the substantia nigra in Parkinson's disease. Previous studies have shown potential benefits of quantitative analysis of neuromelanin and nigrosome images in the substantia nigra, although visual assessments have been performed to evaluate structures in most studies. In this study, we investigate the potential of using deep learning based automatic region segmentation techniques for quantitative analysis of the substantia nigra. The deep convolutional neural network was trained to automatically segment substantia nigra regions on 3D nigrosome and neuromelanin sensitive MR images obtained from 30 subjects. With a 5-fold cross-validation, the mean calculated dice similarity coefficient between manual and deep learning was 0.70 ± 0.11. Although calculated dice similarity coefficients were relatively low due to empirically drawn margins, selected slices were overlapped for more than two slices of all subjects. Our results demonstrate that deep convolutional neural network-based method could provide reliable localization of substantia nigra regions on neuromelanin and nigrosome sensitive MR images.

Development of deep autoencoder-based anomaly detection system for HANARO

  • Seunghyoung Ryu;Byoungil Jeon ;Hogeon Seo ;Minwoo Lee;Jin-Won Shin;Yonggyun Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.475-483
    • /
    • 2023
  • The high-flux advanced neutron application reactor (HANARO) is a multi-purpose research reactor at the Korea Atomic Energy Research Institute (KAERI). HANARO has been used in scientific and industrial research and developments. Therefore, stable operation is necessary for national science and industrial prospects. This study proposed an anomaly detection system based on deep learning, that supports the stable operation of HANARO. The proposed system collects multiple sensor data, displays system information, analyzes status, and performs anomaly detection using deep autoencoder. The system comprises communication, visualization, and anomaly-detection modules, and the prototype system is implemented on site in 2021. Finally, an analysis of the historical data and synthetic anomalies was conducted to verify the overall system; simulation results based on the historical data show that 12 cases out of 19 abnormal events can be detected in advance or on time by the deep learning AD model.

Compressed-Sensing Cardiac CINE MRI using Neural Network with Transfer Learning (전이학습을 수행한 신경망을 사용한 압축센싱 심장 자기공명영상)

  • Park, Seong-Jae;Yoon, Jong-Hyun;Ahn, Chang-Beom
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1408-1414
    • /
    • 2019
  • Deep artificial neural network with transfer learning is applied to compressed sensing cardiovascular MRI. Transfer learning is a method that utilizes structure, filter kernels, and weights of the network used in prior learning for current learning or application. The transfer learning is useful in accelerating learning speed, and in generalization of the neural network when learning data is limited. From a cardiac MRI experiment, with 8 healthy volunteers, the neural network with transfer learning was able to reduce learning time by a factor of more than five compared to that with standalone learning. Using test data set, reconstructed images with transfer learning showed lower normalized mean square error and better image quality compared to those without transfer learning.

Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm

  • Lee, Jae-Hong;Kim, Do-hyung;Jeong, Seong-Nyum;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.2
    • /
    • pp.114-123
    • /
    • 2018
  • Purpose: The aim of the current study was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential usefulness and accuracy of this system for the diagnosis and prediction of periodontally compromised teeth (PCT). Methods: Combining pretrained deep CNN architecture and a self-trained network, periapical radiographic images were used to determine the optimal CNN algorithm and weights. The diagnostic and predictive accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, area under the ROC curve, confusion matrix, and 95% confidence intervals (CIs) were calculated using our deep CNN algorithm, based on a Keras framework in Python. Results: The periapical radiographic dataset was split into training (n=1,044), validation (n=348), and test (n=348) datasets. With the deep learning algorithm, the diagnostic accuracy for PCT was 81.0% for premolars and 76.7% for molars. Using 64 premolars and 64 molars that were clinically diagnosed as severe PCT, the accuracy of predicting extraction was 82.8% (95% CI, 70.1%-91.2%) for premolars and 73.4% (95% CI, 59.9%-84.0%) for molars. Conclusions: We demonstrated that the deep CNN algorithm was useful for assessing the diagnosis and predictability of PCT. Therefore, with further optimization of the PCT dataset and improvements in the algorithm, a computer-aided detection system can be expected to become an effective and efficient method of diagnosing and predicting PCT.

Development of Deep Learning Ensemble Modeling for Cryptocurrency Price Prediction : Deep 4-LSTM Ensemble Model (암호화폐 가격 예측을 위한 딥러닝 앙상블 모델링 : Deep 4-LSTM Ensemble Model)

  • Choi, Soo-bin;Shin, Dong-hoon;Yoon, Sang-Hyeak;Kim, Hee-Woong
    • Journal of Information Technology Services
    • /
    • v.19 no.6
    • /
    • pp.131-144
    • /
    • 2020
  • As the blockchain technology attracts attention, interest in cryptocurrency that is received as a reward is also increasing. Currently, investments and transactions are continuing with the expectation and increasing value of cryptocurrency. Accordingly, prediction for cryptocurrency price has been attempted through artificial intelligence technology and social sentiment analysis. The purpose of this paper is to develop a deep learning ensemble model for predicting the price fluctuations and one-day lag price of cryptocurrency based on the design science research method. This paper intends to perform predictive modeling on Ethereum among cryptocurrencies to make predictions more efficiently and accurately than existing models. Therefore, it collects data for five years related to Ethereum price and performs pre-processing through customized functions. In the model development stage, four LSTM models, which are efficient for time series data processing, are utilized to build an ensemble model with the optimal combination of hyperparameters found in the experimental process. Then, based on the performance evaluation scale, the superiority of the model is evaluated through comparison with other deep learning models. The results of this paper have a practical contribution that can be used as a model that shows high performance and predictive rate for cryptocurrency price prediction and price fluctuations. Besides, it shows academic contribution in that it improves the quality of research by following scientific design research procedures that solve scientific problems and create and evaluate new and innovative products in the field of information systems.

Deep Learning-Based Companion Animal Abnormal Behavior Detection Service Using Image and Sensor Data

  • Lee, JI-Hoon;Shin, Min-Chan;Park, Jun-Hee;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.1-9
    • /
    • 2022
  • In this paper, we propose the Deep Learning-Based Companion Animal Abnormal Behavior Detection Service, which using video and sensor data. Due to the recent increase in households with companion animals, the pet tech industry with artificial intelligence is growing in the existing food and medical-oriented companion animal market. In this study, companion animal behavior was classified and abnormal behavior was detected based on a deep learning model using various data for health management of companion animals through artificial intelligence. Video data and sensor data of companion animals are collected using CCTV and the manufactured pet wearable device, and used as input data for the model. Image data was processed by combining the YOLO(You Only Look Once) model and DeepLabCut for extracting joint coordinates to detect companion animal objects for behavior classification. Also, in order to process sensor data, GAT(Graph Attention Network), which can identify the correlation and characteristics of each sensor, was used.

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

Design of CNN with MLP Layer (MLP 층을 갖는 CNN의 설계)

  • Park, Jin-Hyun;Hwang, Kwang-Bok;Choi, Young-Kiu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.776-782
    • /
    • 2018
  • After CNN basic structure was introduced by LeCun in 1989, there has not been a major structure change except for more deep network until recently. The deep network enhances the expression power due to improve the abstraction ability of the network, and can learn complex problems by increasing non linearity. However, the learning of a deep network means that it has vanishing gradient or longer learning time. In this study, we proposes a CNN structure with MLP layer. The proposed CNNs are superior to the general CNN in their classification performance. It is confirmed that classification accuracy is high due to include MLP layer which improves non linearity by experiment. In order to increase the performance without making a deep network, it is confirmed that the performance is improved by increasing the non linearity of the network.

Ensemble UNet 3+ for Medical Image Segmentation

  • JongJin, Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.269-274
    • /
    • 2023
  • In this paper, we proposed a new UNet 3+ model for medical image segmentation. The proposed ensemble(E) UNet 3+ model consists of UNet 3+s of varying depths into one unified architecture. UNet 3+s of varying depths have same encoder, but have their own decoders. They can bridge semantic gap between encoder and decoder nodes of UNet 3+. Deep supervision was used for learning on a total of 8 nodes of the E-UNet 3+ to improve performance. The proposed E-UNet 3+ model shows better segmentation results than those of the UNet 3+. As a result of the simulation, the E-UNet 3+ model using deep supervision was the best with loss function values of 0.8904 and 0.8562 for training and validation data. For the test data, the UNet 3+ model using deep supervision was the best with a value of 0.7406. Qualitative comparison of the simulation results shows the results of the proposed model are better than those of existing UNet 3+.