• Title/Summary/Keyword: deep Learning

Search Result 5,763, Processing Time 0.04 seconds

Development of Stability Evaluation Algorithm for C.I.P. Retaining Walls During Excavation (가시설 벽체(C.I.P.)의 굴착중 안정성 평가 알고리즘 개발)

  • Lee, Dong-Gun;Yu, Jeong-Yeon;Choi, Ji-Yeol;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.13-24
    • /
    • 2023
  • To investigate the stability of temporary retaining walls during excavation, it is essential to develop reverse analysis technologies capable of precisely evaluating the properties of the ground and a learning model that can assess stability by analyzing real-time data. In this study, we targeted excavation sites where the C.I.P method was applied. We developed a Deep Neural Network (DNN) model capable of evaluating the stability of the retaining wall, and estimated the physical properties of the ground being excavated using a Differential Evolution Algorithm. We performed reverse analysis on a model composed of a two-layer ground for the applicability analysis of the Differential Evolution Algorithm. The results from this analysis allowed us to predict the properties of the ground, such as the elastic modulus, cohesion, and internal friction angle, with an accuracy of 97%. We analyzed 30,000 cases to construct the training data for the DNN model. We proposed stability evaluation grades for each assessment factor, including anchor axial force, uneven subsidence, wall displacement, and structural stability of the wall, and trained the data based on these factors. The application analysis of the trained DNN model showed that the model could predict the stability of the retaining wall with an average accuracy of over 94%, considering factors such as the axial force of the anchor, uneven subsidence, displacement of the wall, and structural stability of the wall.

Consistency of 1-day and 3-day average dietary intake and the relationship of dietary intake with blood glucose, hbA1c, BMI, and lipids in patients with type 2 diabetes (제2형 당뇨병 환자의 1일과 3일 평균 식이섭취량의 일관성과 혈당, 당화혈색소, 체질량지수, 지질과의 관련성)

  • DaeEun, Lee;Haejung, Lee;Sangeun, Lee; MinJin, Lee;Ah Reum, Khang
    • Journal of Korean Biological Nursing Science
    • /
    • v.25 no.1
    • /
    • pp.20-31
    • /
    • 2023
  • Purpose: This study aimed to determine the consistency of 1-day and 3-day average dietary intake using the 24-hour diet recall method and to investigate the relationship of diet intake with physiological indicators potentially associated with diabetic complications in patients with diabetes. Methods: This study conducted a secondary data analysis using pretest data of a nursing intervention study entitled "Development of deep learning based AI coaching program for diabetic patients with high risk and examination of its effects." Data were analyzed through descriptive analysis, one-way repeated-measures analysis of variance, and Pearson correlation coefficients using SPSS 26.0. Results: The average total daily calorie intake over 3 days was 1,494.48 ± 436.47 kcal/day: 1,510.90 ± 547.76 kcal/day on the first day, 1,414.22 ± 527.58 kcal/day on the second day, 1,558.34 ± 645.83 kcal/ day on the third day, showing significant differences (F = 3.59, p = .031). The correlation coefficient between the 1-day and 3-day average dietary intake was 0.41-0.77 for each nutrient and 0.62-0.80 for each food group. Vegetable intake showed negative correlations with body mass index (BMI; r = -.19, p = .023) and triglycerides (r = -.18, p = .036), whereas dairy intake was positively associated with low-density lipoprotein-cholesterol (LDL; r = -0.18, p = .034) and triglycerides (r = .40, p<.001). Conclusion: This study demonstrated that 1-day dietary intake was highly correlated with 3-day average dietary intake using the 24-hour diet recall method. Food groups showed significant associations with physiological indicators of potential diabetic complications such as BMI, triglycerides, and LDL levels. Further studies are needed to improve the knowledge base on the relationships between physiological indicators and food groups.

Detecting Weak Signals for Carbon Neutrality Technology using Text Mining of Web News (탄소중립 기술의 미래신호 탐색연구: 국내 뉴스 기사 텍스트데이터를 중심으로)

  • Jisong Jeong;Seungkook Roh
    • Journal of Industrial Convergence
    • /
    • v.21 no.5
    • /
    • pp.1-13
    • /
    • 2023
  • Carbon neutrality is the concept of reducing greenhouse gases emitted by human activities and making actual emissions zero through removal of remaining gases. It is also called "Net-Zero" and "carbon zero". Korea has declared a "2050 Carbon Neutrality policy" to cope with the climate change crisis. Various carbon reduction legislative processes are underway. Since carbon neutrality requires changes in industrial technology, it is important to prepare a system for carbon zero. This paper aims to understand the status and trends of global carbon neutrality technology. Therefore, ROK's web platform "www.naver.com." was selected as the data collection scope. Korean online articles related to carbon neutrality were collected. Carbon neutrality technology trends were analyzed by future signal methodology and Word2Vec algorithm which is a neural network deep learning technology. As a result, technology advancement in the steel and petrochemical sectors, which are carbon over-release industries, was required. Investment feasibility in the electric vehicle sector and technology advancement were on the rise. It seems that the government's support for carbon neutrality and the creation of global technology infrastructure should be supported. In addition, it is urgent to cultivate human resources, and possible to confirm the need to prepare support policies for carbon neutrality.

A Study on the Effect of Macroeconomic Variables on Apartment Rental Housing Prices by Region and the Establishment of Prediction Model (거시경제변수가 지역 별 아파트 전세가격에 미치는 영향 및 예측모델 구축에 관한 연구)

  • Kim, Eun-Mi
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.211-231
    • /
    • 2022
  • This study attempted to identify the effects of macroeconomic variables such as the All Industry Production Index, Consumer Price Index, CD Interest Rate, and KOSPI on apartment lease prices divided into nationwide, Seoul, metropolitan, and region, and to present a methodological prediction model of apartment lease prices by region using Long Short Term Memory (LSTM). According to VAR analysis results, the nationwide apartment lease price index and consumer price index in Lag1 and 2 had a significant effect on the nationwide apartment lease price, and likewise, the Seoul apartment lease price index, the consumer price index, and the CD interest rate in Lag1 and 2 affect the apartment lease price in Seoul. In addition, it was confirmed that the wide-area apartment jeonse price index and the consumer price index had a significant effect on Lag1, and the local apartment jeonse price index and the consumer price index had a significant effect on Lag1. As a result of the establishment of the LSTM prediction model, the predictive power was the highest with RMSE 0.008, MAE 0.006, and R-Suared values of 0.999 for the local apartment lease price prediction model. In the future, it is expected that more meaningful results can be obtained by applying an advanced model based on deep learning, including major policy variables

Super High-Resolution Image Style Transfer (초-고해상도 영상 스타일 전이)

  • Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.104-123
    • /
    • 2022
  • Style transfer based on neural network provides very high quality results by reflecting the high level structural characteristics of images, and thereby has recently attracted great attention. This paper deals with the problem of resolution limitation due to GPU memory in performing such neural style transfer. We can expect that the gradient operation for style transfer based on partial image, with the aid of the fixed size of receptive field, can produce the same result as the gradient operation using the entire image. Based on this idea, each component of the style transfer loss function is analyzed in this paper to obtain the necessary conditions for partitioning and padding, and to identify, among the information required for gradient calculation, the one that depends on the entire input. By structuring such information for using it as auxiliary constant input for partition-based gradient calculation, this paper develops a recursive algorithm for super high-resolution image style transfer. Since the proposed method performs style transfer by partitioning input image into the size that a GPU can handle, it can perform style transfer without the limit of the input image resolution accompanied by the GPU memory size. With the aid of such super high-resolution support, the proposed method can provide a unique style characteristics of detailed area which can only be appreciated in super high-resolution style transfer.

Evaluation of Human Demonstration Augmented Deep Reinforcement Learning Policy Optimization Methods Using Object Manipulation with an Anthropomorphic Robot Hand (휴먼형 로봇 손의 사물 조작 수행을 이용한 인간 행동 복제 강화학습 정책 최적화 방법 성능 평가)

  • Park, Na Hyeon;Oh, Ji Heon;Ryu, Ga Hyun;Anazco, Edwin Valarezo;Lopez, Patricio Rivera;Won, Da Seul;Jeong, Jin Gyun;Chang, Yun Jung;Kim, Tae-Seong
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.858-861
    • /
    • 2020
  • 로봇이 사람과 같이 다양하고 복잡한 사물 조작을 하기 위해서 휴먼형 로봇손의 사물 파지 작업이 필수적이다. 자유도 (Degree of Freedom, DoF)가 높은 휴먼형(anthropomorphic) 로봇손을 학습시키기 위하여 사람 데모(human demonstration)가 결합된 강화학습 최적화 방법이 제안되었다. 본 연구에서는 강화학습 최적화 방법에 사람 데모가 결합된 Demonstration Augmented Natural Policy Gradient(DA-NPG)와 NPG 의 성능 비교를 통하여 행동 복제의 효율성을 확인하고, DA-NPG, DA-Trust Region Policy Optimization (DA-TRPO), DA-Proximal Policy Optimization (DA-PPO)의 최적화 방법의 성능 평가를 위하여 6 종의 물체에 대한 휴먼형 로봇손의 사물 조작 작업을 수행한다. 그 결과, DA-NPG 와 NPG를 비교한 결과를 통해 휴먼형 로봇손의 사물 조작 강화학습에 행동 복제가 효율적임을 증명하였다. 또한, DA-NPG 는 DA-TRPO 와 유사한 성능을 보이면서 모든 물체에 대한 사물 파지에 성공하여 가장 안정적이었다. 반면, DA-TRPO 와 DA-PPO 는 사물 조작에 실패한 물체가 존재하여 불안정한 성능을 보였다. 본 연구에서 제안하는 방법은 향후 실제 휴먼형 로봇에 적용하여 휴먼형 로봇 손의 사물조작 지능 개발에 유용할 것으로 전망된다.

Personalized Session-based Recommendation for Set-Top Box Audience Targeting (셋톱박스 오디언스 타겟팅을 위한 세션 기반 개인화 추천 시스템 개발)

  • Jisoo Cha;Koosup Jeong;Wooyoung Kim;Jaewon Yang;Sangduk Baek;Wonjun Lee;Seoho Jang;Taejoon Park;Chanwoo Jeong;Wooju Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.323-338
    • /
    • 2023
  • TV advertising with deep analysis of watching pattern of audiences is important to set-top box audience targeting. Applying session-based recommendation model(SBR) to internet commercial, or recommendation based on searching history of user showed its effectiveness in previous studies, but applying SBR to the TV advertising was difficult in South Korea due to data unavailabilities. Also, traditional SBR has limitations for dealing with user preferences, especially in data with user identification information. To tackle with these problems, we first obtain set-top box data from three major broadcasting companies in South Korea(SKB, KT, LGU+) through collaboration with Korea Broadcast Advertising Corporation(KOBACO), and this data contains of watching sequence of 4,847 anonymized users for 6 month respectively. Second, we develop personalized session-based recommendation model to deal with hierarchical data of user-session-item. Experiments conducted on set-top box audience dataset and two other public dataset for validation. In result, our proposed model outperformed baseline model in some criteria.

The Automated Scoring of Kinematics Graph Answers through the Design and Application of a Convolutional Neural Network-Based Scoring Model (합성곱 신경망 기반 채점 모델 설계 및 적용을 통한 운동학 그래프 답안 자동 채점)

  • Jae-Sang Han;Hyun-Joo Kim
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.3
    • /
    • pp.237-251
    • /
    • 2023
  • This study explores the possibility of automated scoring for scientific graph answers by designing an automated scoring model using convolutional neural networks and applying it to students' kinematics graph answers. The researchers prepared 2,200 answers, which were divided into 2,000 training data and 200 validation data. Additionally, 202 student answers were divided into 100 training data and 102 test data. First, in the process of designing an automated scoring model and validating its performance, the automated scoring model was optimized for graph image classification using the answer dataset prepared by the researchers. Next, the automated scoring model was trained using various types of training datasets, and it was used to score the student test dataset. The performance of the automated scoring model has been improved as the amount of training data increased in amount and diversity. Finally, compared to human scoring, the accuracy was 97.06%, the kappa coefficient was 0.957, and the weighted kappa coefficient was 0.968. On the other hand, in the case of answer types that were not included in the training data, the s coring was almos t identical among human s corers however, the automated scoring model performed inaccurately.

Prediction of groundwater level in the middle mountainous area of Pyoseon Watershed in Jeju Island using deep learning algorithm, LSTM (딥러닝 알고리즘 LSTM을 활용한 제주도 표선유역 중산간지역의 지하수위 예측)

  • Shin, Mun-Ju;Moon, Soo-Hyoung;Moon, Duk Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.291-291
    • /
    • 2020
  • 제주도는 강수의 지표침투성이 좋은 화산섬의 지질특성상 지표수의 개발이용여건이 취약한 관계로 용수의 대부분을 지하수에 의존하고 있다. 따라서 제주도는 정책 및 연구적으로 오랜 기간동안 지하수의 보전관리에 많은 노력을 기울여 오고 있다. 하지만 최근 기후변화로 인한 강수의 변동성 증가로 인해 지하수위의 변동성 또한 증가할 가능성이 있으며 따라서 지하수위의 급격한 하강에 대비하여 지하수위의 예측 및 지하수 취수량 관리의 필요성이 요구되고 있다. 지하수에 절대적으로 의존하고 있는 제주도의 수자원 이용 여건을 고려할 때, 지하수의 취수량 관리를 위한 지하수위의 실시간 예측이 필요한 실정이다. 하지만 기존의 예측방법에 의한 제주도 지하수위 예측기간은 충분히 길지 않으며 예측기간이 길어지면 예측성능이 낮아지는 문제점이 있었다. 본 연구에서는 이러한 단점을 보완하기 위해 딥러닝 알고리즘인 Long Short Term Memory(LSTM)를 활용하여 제주도 남동쪽 표선유역 중산간지역의 1개 지하수위 관측정에 대해 지하수위를 예측하고 분석하였다. R 기반의 Keras 패키지에 있는 LSTM 알고리즘을 사용하였고, 입력자료는 인근의 성판악 및 교래 강우관측소의 일단위 강수량자료와 인근 취수정의 지하수 취수량자료 및 연구대상 관측정의 지하수위 자료를 사용하였으며, 사용된 자료의 기간은 2001년 2월 11일부터 2019년 10월 31일까지 이다. 2001년부터 13년의 보정 및 3년의 검증용 시계열자료를 사용하여 매개변수의 보정 및 과적합을 방지하였고, 3년의 예측용 시계열자료를 사용하여 LSTM 알고리즘의 예측성능을 평가하였다. 목표 예측일수는 1일, 10일, 20일, 30일로 설정하였으며 보정, 검증 및 예측기간에 대한 모의결과의 평가지수로는 Nash-Sutcliffe Efficiency(NSE)를 활용하였다. 모의결과, 보정, 검증 및 예측기간에 대한 1일 예측의 NSE는 각각 0.997, 0.997, 0.993 이었고, 10일 예측의 NSE는 각각 0.993, 0.912, 0.930 이었다. 20일 예측의 경우 NSE는 각각 0.809, 0.781, 0.809 이었으며 30일 예측의 경우 각각 0.677, 0.622, 0.633 이었다. 이것은 LSTM 알고리즘에 의한 10일 예측까지는 관측 지하수위 시계열자료를 매우 적절히 모의할 수 있다는 것을 의미하며, 20일 예측 또한 적절히 모의할 수 있다는 것을 의미한다. 따라서 LSTM 알고리즘을 활용하면 본 연구대상지점에 대한 2주일 또는 3주일의 안정적인 지하수위 예보가 가능하다고 판단된다. 또한 LSTM 알고리즘을 통한 실시간 지하수위 예측은 지하수 취수량 관리에 활용할 수 있을 것이다.

  • PDF

A study on discharge estimation for the event using a deep learning algorithm (딥러닝 알고리즘을 이용한 강우 발생시의 유량 추정에 관한 연구)

  • Song, Chul Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.246-246
    • /
    • 2021
  • 본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.

  • PDF