Journal of Korean Tunnelling and Underground Space Association
/
v.4
no.4
/
pp.277-286
/
2002
Most of the problems in dealing with the tunnel construction are the uncertainties and complexities of the stress conditions and rock strengths in ahead of the tunnel excavation. The limitations on the investigation technology, inaccessibility of borehole test in mountain area and public hatred also restrict our knowledge on the geologic conditions on the mountainous tunneling area. Nevertheless an extensive and superior geophysical exploration data is possibly acquired deep within the mountain area, with up to the tunnel locations in the case of alternative design or turn-key base projects. An appealing claim in the use of artificial neural networks (ANN) is that they give a more trustworthy results on our data based on identifying relevant input variables such as a little geotechnical information and biological learning principles. In this study, error back-propagation algorithm that is one of the teaching techniques of ANN is applied to presupposition on Rock Mass Ratings (RMR) for unknown tunnel area. In order to verify the applicability of this model, a 4km railway tunnel's field data are verified and used as input parameters for the prediction of RMR, with the learned pattern by error back propagation logics. ANN is one of basic methods in solving the geotechnical uncertainties and helpful in solving the problems with data consistency, but needs some modification on the technical problems and we hope our study to be developed in the future design work.
Recently, as famous YouTubers produce and broadcast videos that receive sponsorship and advertising such as indirect advertising (PPL), a so-called 'back advertising' controversy continues, and not only famous YouTubers but also entertainers are caught up in the issue. It is causing confusion among the public in Korea. This study attempts to find out the public's reaction before and after the controversy of 'back advertising' by YouTubers through comment analysis. Specifically, among text analysis using R programs, we intend to analyze the issue through various methods such as word cloud, qgraph analysis, LDA, and word2vec analysis, a deep learning technique. The target of the analysis was to analyze the channels of three YouTubers who belonged to the controversy of the 'back advertising' YouTuber and uploaded the 'Apology video'. The 5 most recent videos of Muk-bang YouTuber Moon Bok-hee, who has a similar content disposition to SussTV's Han Hye-yeon stylist, which was controversial, and Yang Pang, a YouTuber who showed various contents (August 09, 2020) Criterion and her first 5 videos uploaded were reviewed. As a result of the study, most of the comments that showed positive reactions before the controversy, but after the controversy, it was found that negative reactions accounted for most of the comments. Therefore, this study examines the degree of change of the public about influencers through comments after the controversy over 'back advertising' through various analysis using R program. This research also devises various measures to prevent the occurrence of back advertising of influencers in the future.
Kim, Jooyoung;Lee, Siyoung;Kim, Kyuri;Cho, Kyeongwon;You, Sungmin;So, Soonwon;Park, Eunkyoung;Cho, Baek Hwan;Choi, Dongil;Park, Hoon Ki;Kim, In Young
Journal of Biomedical Engineering Research
/
v.38
no.6
/
pp.321-329
/
2017
This paper presents a bone metastasis Detection algorithm on abdominal computed tomography images for early detection using fully convolutional neural networks. The images were taken from patients with various cancers (such as lung cancer, breast cancer, colorectal cancer, etc), and thus the locations of those lesions were varied. To overcome the lack of data, we augmented the data by adjusting the brightness of the images or flipping the images. Before the augmentation, when 70% of the whole data were used in the pre-test, we could obtain the pixel-wise sensitivity of 18.75%, the specificity of 99.97% on the average of test dataset. With the augmentation, we could obtain the sensitivity of 30.65%, the specificity of 99.96%. The increase in sensitivity shows that the augmentation was effective. In the result obtained by using the whole data, the sensitivity of 38.62%, the specificity of 99.94% and the accuracy of 99.81% in the pixel-wise. lesion-wise sensitivity is 88.89% while the false alarm per case is 0.5. The results of this study did not reach the level that could substitute for the clinician. However, it may be helpful for radiologists when it can be used as a screening tool.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.8
/
pp.572-578
/
2020
The stock market is affected by unexpected factors, such as politics, society, and natural disasters, as well as by corporate performance and economic conditions. In recent days, artificial intelligence has become popular, and many researchers have tried to conduct experiments with that. Our study proposes an experiment using not only stock-related data but also other various economic data. We acquired a year's worth of data on stock prices, the percentage of foreigners, interest rates, and exchange rates, and combined them in various ways. Thus, our input data became diversified, and we put the combined input data into a nonlinear autoregressive network with exogenous inputs (NARX) model. With the input data in the NARX model, we analyze and compare them to the original data. As a result, the model exhibits a root mean square error (RMSE) of 0.08 as being the most accurate when we set 10 neurons and two delays with a combination of stock prices and exchange rates from the U.S., China, Europe, and Japan. This study is meaningful in that the exchange rate has the greatest influence on stock prices, lowering the error from RMSE 0.589 when only closing data are used.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.05a
/
pp.347-350
/
2018
In order for an IoT system to automatically make the house temperature pleasant for the user, the system needs to predict the optimal start-up time of air-conditioner or heater to get to the temperature that the user has set. Predicting the optimal start-up time is important because it prevents extra fee from the unnecessary operation of the air-conditioner and heater. This paper introduces an ANN(Artificial Neural Network) and an IoT system that predicts the cooling and heating time in households using air-conditioner and heater. Many variables such as house structure, house size, and external weather condition affect the cooling and heating. Out of the many variables, measurable variables such as house temperature, house humidity, outdoor temperature, outdoor humidity, wind speed, wind direction, and wind chill was used to create training data for constructing the model. After constructing the ANN model, an IoT system that uses the model was developed. The IoT system comprises of a main system powered by Raspberry Pi 3 and a mobile application powered by Android. The mobile's GPS sensor and an developed feature used to predict user's return.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.4
/
pp.161-166
/
2018
In this paper, we propose a method for the random selection of pooling operations for the regularization and reduction of cross validation in convolutional neural networks. The pooling operation in convolutional neural networks is used to reduce the size of the feature map and for its shift invariant properties. In the existing pooling method, one pooling operation is applied in each pooling layer. Because this method fixes the convolution network, the network suffers from overfitting, which means that it excessively fits the models to the training samples. In addition, to find the best combination of pooling operations to maximize the performance, cross validation must be performed. To solve these problems, we introduce the probability concept into the pooling layers. The proposed method does not select one pooling operation in each pooling layer. Instead, we randomly select one pooling operation among multiple pooling operations in each pooling region during training, and for testing purposes, we use probabilistic weighting to produce the expected output. The proposed method can be seen as a technique in which many networks are approximately averaged using a different pooling operation in each pooling region. Therefore, this method avoids the overfitting problem, as well as reducing the amount of cross validation. The experimental results show that the proposed method can achieve better generalization performance and reduce the need for cross validation.
The interest about 4th Industrial Revolution was impressively increased from newspapers, iindustry, government and academic sectors. Especially AI what could be felt by the skin of many peoples, already overpassed the ability of the human's even in creative areas. Namely, now many people start fo feel that the effect of the revolution is just infront of themselves. There were several issues in this trend, the ability of deep learning by machine, the identity of the human, the change of job environment and the concern about the social change etc. Recently many studies have been made about the 4th industrial revolution in many fields like as AI(artificial intelligence), CRISPR, big data and driverless car etc. As many positive effects and pessimistic effects are existed at the same time and many preventing actions are being suggested recently, these opinions will be compared and analyzed and better solutions will be found eventually. Several educational, political, scientific, social and ethical effects and solutions were studied and suggested in this study. Clear implication from the study is that the world we will live from now on is changing faster than ever in the social, industrial, political and educational environment. If it will reform the social systems according to those changes, a society (nation or government) will grasp the chance of its development or take-off, otherwise, it will consume the resources ineffectively and lose the competition as a whole society. But the method of that reform is not that apparent in many aspects as the revolution is progressing currently and its definition should be made whether in industrial or scientific aspect. The person or nation who will define it will have the advantage of leading the future of that business or society.
Kim, Beomseok;Jung, Jinwoong;Hong, Eunbin;Cho, Sunghyun;Lee, Seungyong
Journal of the Korea Computer Graphics Society
/
v.23
no.3
/
pp.65-75
/
2017
As a 360-degree image carries information of all directions, it often has too much information. Moreover, in order to investigate a 360-degree image on a 2D display, a user has to either click and drag the image with a mouse, or project it to a 2D panorama image, which inevitably introduces severe distortions. In consequence, investigating a 360-degree image and finding an object of interest in such a 360-degree image could be a tedious task. To resolve this issue, this paper proposes a method to find a region of interest and produces a 2D naturally looking image from a given 360-degree image that best matches a description given by a user in a natural language sentence. Our method also considers photo composition so that the resulting image is aesthetically pleasing. Our method first converts a 360-degree image to a 2D cubemap. As objects in a 360-degree image may appear distorted or split into multiple pieces in a typical cubemap, leading to failure of detection of such objects, we introduce a modified cubemap. Then our method applies a Long Short Term Memory (LSTM) network based object detection method to find a region of interest with a given natural language sentence. Finally, our method produces an image that contains the detected region, and also has aesthetically pleasing composition.
In this paper, we propose a system which estimates Manhattan coordinate systems for urban scene images using a convolutional neural network (CNN). Estimating the Manhattan coordinate system from an image under the Manhattan world assumption is the basis for solving computer graphics and vision problems such as image adjustment and 3D scene reconstruction. We construct a CNN that estimates Manhattan coordinate systems based on GoogLeNet [1]. To train the CNN, we collect about 155,000 images under the Manhattan world assumption by using the Google Street View APIs and calculate Manhattan coordinate systems using existing calibration methods to generate dataset. In contrast to PoseNet [2] that trains per-scene CNNs, our method learns from images under the Manhattan world assumption and thus estimates Manhattan coordinate systems for new images that have not been learned. Experimental results show that our method estimates Manhattan coordinate systems with the median error of $3.157^{\circ}$ for the Google Street View images of non-trained scenes, as test set. In addition, compared to an existing calibration method [3], the proposed method shows lower intermediate errors for the test set.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.1
/
pp.135-141
/
2018
In this paper, we describe design and implementation of optimal smart home control system. Recent developments in technologies such as sensors and communication have enabled the Internet of Things to control a wide range of objects, such as light bulbs, socket-outlet, or clothing. Many businesses rely on the launch of collaborative services between them. However, traditional IoT systems often support a single protocol, although data is transmitted across multiple protocols for end-to-end devices. In addition, depending on the manufacturer of the Internet of things, there is a dedicated application and it has a high degree of complexity in registering and controlling different IoT devices for the internet of things. ARIoT system, special marking points and edge extraction techniques are used to detect objects, but there are relatively low deviations depending on the sampling data. The proposed system implements an IoT gateway of object based on OneM2M to compensate for existing problems. It supports diverse protocols of end to end devices and supported them with a single application. In addition, devices were learned by using deep learning in the artificial intelligence field and improved object recognition of existing systems by inference and detection, reducing the deviation of recognition rates.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.