• Title/Summary/Keyword: deep Learning

Search Result 5,763, Processing Time 0.031 seconds

Performance Evaluation of a Machine Learning Model Based on Data Feature Using Network Data Normalization Technique (네트워크 데이터 정형화 기법을 통한 데이터 특성 기반 기계학습 모델 성능평가)

  • Lee, Wooho;Noh, BongNam;Jeong, Kimoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.785-794
    • /
    • 2019
  • Recently Deep Learning technology, one of the fourth industrial revolution technologies, is used to identify the hidden meaning of network data that is difficult to detect in the security arena and to predict attacks. Property and quality analysis of data sources are required before selecting the deep learning algorithm to be used for intrusion detection. This is because it affects the detection method depending on the contamination of the data used for learning. Therefore, the characteristics of the data should be identified and the characteristics selected. In this paper, the characteristics of malware were analyzed using network data set and the effect of each feature on performance was analyzed when the deep learning model was applied. The traffic classification experiment was conducted on the comparison of characteristics according to network characteristics and 96.52% accuracy was classified based on the selected characteristics.

A Study on the Efficiency of Deep Learning on Embedded Boards (임베디드 보드에서의 딥러닝 사용 효율성 분석 연구)

  • Choi, Donggyu;Lee, Dongjin;Lee, Jiwon;Son, Seongho;Kim, Minyoung;Jang, Jong-wook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.668-673
    • /
    • 2021
  • As the fourth industrial revolution begins in earnest, related technologies are becoming a hot topic. Hardware development is accelerating to make the most of technologies such as high-speed wireless communication, and related companies are growing rapidly. Artificial intelligence often uses desktops in general for related research, but it is mainly used for the learning process of deep learning and often transplants the generated models into devices to be used by including them in programs, etc. However, it is difficult to produce results for devices that do not have sufficient power or performance due to excessive learning or lack of power due to the use of models built to the desktop's performance. In this paper, we analyze efficiency using boards with several Neural Process Units on sale before developing the performance of deep learning to match embedded boards, and deep learning accelerators that can increase deep learning performance with USB, and present a simple development direction possible using embedded boards.

Performance Evaluation of U-net Deep Learning Model for Noise Reduction according to Various Hyper Parameters in Lung CT Images (폐 CT 영상에서의 노이즈 감소를 위한 U-net 딥러닝 모델의 다양한 학습 파라미터 적용에 따른 성능 평가)

  • Min-Gwan Lee;Chanrok Park
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.709-715
    • /
    • 2023
  • In this study, the performance evaluation of image quality for noise reduction was implemented using the U-net deep learning architecture in computed tomography (CT) images. In order to generate input data, the Gaussian noise was applied to ground truth (GT) data, and datasets were consisted of 8:1:1 ratio of train, validation, and test sets among 1300 CT images. The Adagrad, Adam, and AdamW were used as optimizer function, and 10, 50 and 100 times for number of epochs were applied. In addition, learning rates of 0.01, 0.001, and 0.0001 were applied using the U-net deep learning model to compare the output image quality. To analyze the quantitative values, the peak signal to noise ratio (PSNR) and coefficient of variation (COV) were calculated. Based on the results, deep learning model was useful for noise reduction. We suggested that optimized hyper parameters for noise reduction in CT images were AdamW optimizer function, 100 times number of epochs and 0.0001 learning rates.

Improving Orbit Determination Precision of Satellite Optical Observation Data Using Deep Learning (심층 학습을 이용한 인공위성 광학 관측 데이터의 궤도결정 정밀도 향상)

  • Hyeon-man Yun;Chan-Ho Kim;In-Soo Choi;Soung-Sub Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.262-271
    • /
    • 2024
  • In this paper, by applying deep learning, one of the A.I. techniques, through angle information, which is optical observation data generated when observing satellites at observatories, distance information from observatories is learned to predict range data, thereby increasing the precision of satellite's orbit determination. To this end, we generated observational data from GMAT, reduced the learning data error of deep learning through preprocessing of the generated observational data, and conducted deep learning through MATLAB. Based on the predicted distance information from learning, trajectory determination was performed using an extended Kalman filter, one of the filtering techniques for trajectory determination, through GMAT. The reliability of the model was verified by comparing and analyzing the orbital determination with angular information without distance information and the orbital determination result with predicted distance information from the model.

Korean and English Sentiment Analysis Using the Deep Learning

  • Ramadhani, Adyan Marendra;Choi, Hyung Rim;Lim, Seong Bae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.3
    • /
    • pp.59-71
    • /
    • 2018
  • Social media has immense popularity among all services today. Data from social network services (SNSs) can be used for various objectives, such as text prediction or sentiment analysis. There is a great deal of Korean and English data on social media that can be used for sentiment analysis, but handling such huge amounts of unstructured data presents a difficult task. Machine learning is needed to handle such huge amounts of data. This research focuses on predicting Korean and English sentiment using deep forward neural network with a deep learning architecture and compares it with other methods, such as LDA MLP and GENSIM, using logistic regression. The research findings indicate an approximately 75% accuracy rate when predicting sentiments using DNN, with a latent Dirichelet allocation (LDA) prediction accuracy rate of approximately 81%, with the corpus being approximately 64% accurate between English and Korean.

Deep CNN based Pilot Allocation Scheme in Massive MIMO systems

  • Kim, Kwihoon;Lee, Joohyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4214-4230
    • /
    • 2020
  • This paper introduces a pilot allocation scheme for massive MIMO systems based on deep convolutional neural network (CNN) learning. This work is an extension of a prior work on the basic deep learning framework of the pilot assignment problem, the application of which to a high-user density nature is difficult owing to the factorial increase in both input features and output layers. To solve this problem, by adopting the advantages of CNN in learning image data, we design input features that represent users' locations in all the cells as image data with a two-dimensional fixed-size matrix. Furthermore, using a sorting mechanism for applying proper rule, we construct output layers with a linear space complexity according to the number of users. We also develop a theoretical framework for the network capacity model of the massive MIMO systems and apply it to the training process. Finally, we implement the proposed deep CNN-based pilot assignment scheme using a commercial vanilla CNN, which takes into account shift invariant characteristics. Through extensive simulation, we demonstrate that the proposed work realizes about a 98% theoretical upper-bound performance and an elapsed time of 0.842 ms with low complexity in the case of a high-user-density condition.

Improved Classification of Cancerous Histopathology Images using Color Channel Separation and Deep Learning

  • Gupta, Rachit Kumar;Manhas, Jatinder
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.175-182
    • /
    • 2021
  • Oral cancer is ranked second most diagnosed cancer among Indian population and ranked sixth all around the world. Oral cancer is one of the deadliest cancers with high mortality rate and very less 5-year survival rates even after treatment. It becomes necessary to detect oral malignancies as early as possible so that timely treatment may be given to patient and increase the survival chances. In recent years deep learning based frameworks have been proposed by many researchers that can detect malignancies from medical images. In this paper we have proposed a deep learning-based framework which detects oral cancer from histopathology images very efficiently. We have designed our model to split the color channels and extract deep features from these individual channels rather than single combined channel with the help of Efficient NET B3. These features from different channels are fused by using feature fusion module designed as a layer and placed before dense layers of Efficient NET. The experiments were performed on our own dataset collected from hospitals. We also performed experiments of BreakHis, and ICML datasets to evaluate our model. The results produced by our model are very good as compared to previously reported results.

Zero-anaphora resolution in Korean based on deep language representation model: BERT

  • Kim, Youngtae;Ra, Dongyul;Lim, Soojong
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.299-312
    • /
    • 2021
  • It is necessary to achieve high performance in the task of zero anaphora resolution (ZAR) for completely understanding the texts in Korean, Japanese, Chinese, and various other languages. Deep-learning-based models are being employed for building ZAR systems, owing to the success of deep learning in the recent years. However, the objective of building a high-quality ZAR system is far from being achieved even using these models. To enhance the current ZAR techniques, we fine-tuned a pretrained bidirectional encoder representations from transformers (BERT). Notably, BERT is a general language representation model that enables systems to utilize deep bidirectional contextual information in a natural language text. It extensively exploits the attention mechanism based upon the sequence-transduction model Transformer. In our model, classification is simultaneously performed for all the words in the input word sequence to decide whether each word can be an antecedent. We seek end-to-end learning by disallowing any use of hand-crafted or dependency-parsing features. Experimental results show that compared with other models, our approach can significantly improve the performance of ZAR.

Portfolio System Using Deep Learning (딥러닝을 활용한 자산분배 시스템)

  • Kim, SungSoo;Kim, Jong-In;Jung, Keechul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2019
  • As deep learning with the network-based algorithms evolve, artificial intelligence is rapidly growing around the world. Among them, finance is expected to be the field where artificial intelligence is most used, and many studies have been done recently. The existing financial strategy using deep-run is vulnerable to volatility because it focuses on stock price forecasts for a single stock. Therefore, this study proposes to construct ETF products constructed through portfolio methods by calculating the stocks constituting funds by using deep learning. We analyze the performance of the proposed model in the KOSPI 100 index. Experimental results showed that the proposed model showed improved results in terms of returns or volatility.

Deep Learning-based Environment-aware Home Automation System (딥러닝 기반 상황 맞춤형 홈 오토메이션 시스템)

  • Park, Min-ji;Noh, Yunsu;Jo, Seong-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.334-337
    • /
    • 2019
  • In this study, we built the data collection system to learn user's habit data by deep learning and to create an indoor environment according to the situation. The system consists of a data collection server and several sensor nodes, which creates the environment according to the data collected. We used Google Inception v3 network to analyze the photographs and hand-designed second DNN (Deep Neural Network) to infer behaviors. As a result of the DNN learning, we gained 98.4% of Testing Accuracy. Through this results, we were be able to prove that DNN is capable of extrapolating the situation.

  • PDF