• Title/Summary/Keyword: deep Learning

Search Result 5,763, Processing Time 0.028 seconds

Bitcoin Price Forecasting Using Neural Decomposition and Deep Learning

  • Ramadhani, Adyan Marendra;Kim, Na Rang;Lee, Tai Hun;Ryu, Seung Eui
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.81-92
    • /
    • 2018
  • Bitcoin is a cryptographic digital currency and has been given a significant amount of attention in literature since it was first introduced by Satoshi Nakamoto in 2009. It has become an outstanding digital currency with a current market capitalization of approximately $60 billion. By 2019, it is expected to have over 5 million users. Nowadays, investing in Bitcoin is popular, and along with the advantages and disadvantages of Bitcoin, learning how to forecast is important for investors in their decision-making so that they are able to anticipate problems and earn a profit. However, most investors are reluctant to invest in bitcoin because it often fluctuates and is unpredictable, which may cost a lot of money. In this paper, we focus on solving the Bitcoin forecasting prediction problem based on deep learning structures and neural decomposition. First, we propose a deep learning-based framework for the bitcoin forecasting problem with deep feed forward neural network. Forecasting is a time-dependent data type; thus, to extract the information from the data requires decomposition as the feature extraction technique. Based on the results of the experiment, the use of neural decomposition and deep neural networks allows for accurate predictions of around 89%.

Performance Evaluation of Deep Neural Network (DNN) Based on HRV Parameters for Judgment of Risk Factors for Coronary Artery Disease (관상동맥질환 위험인자 유무 판단을 위한 심박변이도 매개변수 기반 심층 신경망의 성능 평가)

  • Park, Sung Jun;Choi, Seung Yeon;Kim, Young Mo
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.62-67
    • /
    • 2019
  • The purpose of this study was to evaluate the performance of deep neural network model in order to determine whether there is a risk factor for coronary artery disease based on the cardiac variation parameter. The study used unidentifiable 297 data to evaluate the performance of the model. Input data consists of heart rate parameters, which are SDNN (standard deviation of the N-N intervals), PSI (physical stress index), TP (total power), VLF (very low frequency), LF (low frequency), HF (high frequency), RMSSD (root mean square of successive difference) APEN (approximate entropy) and SRD (successive R-R interval difference), the age group and sex. Output data are divided into normal and patient groups, and the patient group consists of those diagnosed with diabetes, high blood pressure, and hyperlipidemia among the various risk factors that can cause coronary artery disease. Based on this, a binary classification model was applied using Deep Neural Network of deep learning techniques to classify normal and patient groups efficiently. To evaluate the effectiveness of the model used in this study, Kernel SVM (support vector machine), one of the classification models in machine learning, was compared and evaluated using same data. The results showed that the accuracy of the proposed deep neural network was train set 91.79% and test set 85.56% and the specificity was 87.04% and the sensitivity was 83.33% from the point of diagnosis. These results suggest that deep learning is more efficient when classifying these medical data because the train set accuracy in the deep neural network was 7.73% higher than the comparative model Kernel SVM.

Construction of Faster R-CNN Deep Learning Model for Surface Damage Detection of Blade Systems (블레이드의 표면 결함 검출을 위한 Faster R-CNN 딥러닝 모델 구축)

  • Jang, Jiwon;An, Hyojoon;Lee, Jong-Han;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.80-86
    • /
    • 2019
  • As computer performance improves, research using deep learning are being actively carried out in various fields. Recently, deep learning technology has been applying to the safety evaluation for structures. In particular, the internal blades of a turbine structure requires experienced experts and considerable time to detect surface damages because of the difficulty of separation of the blades from the structure and the dark environmental condition. This study proposes a Faster R-CNN deep learning model that can detect surface damages on the internal blades, which is one of the primary elements of the turbine structure. The deep learning model was trained using image data with dent and punch damages. The image data was also expanded using image filtering and image data generator techniques. As a result, the deep learning model showed 96.1% accuracy, 95.3% recall, and 96% precision. The value of the recall means that the proposed deep learning model could not detect the blade damages for 4.7%. The performance of the proposed damage detection system can be further improved by collecting and extending damage images in various environments, and finally it can be applicable for turbine engine maintenance.

Development of Convolutional Network-based Denoising Technique using Deep Reinforcement Learning in Computed Tomography (심층강화학습을 이용한 Convolutional Network 기반 전산화단층영상 잡음 저감 기술 개발)

  • Cho, Jenonghyo;Yim, Dobin;Nam, Kibok;Lee, Dahye;Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.991-1001
    • /
    • 2020
  • Supervised deep learning technologies for improving the image quality of computed tomography (CT) need a lot of training data. When input images have different characteristics with training images, the technologies cause structural distortion in output images. In this study, an imaging model based on the deep reinforcement learning (DRL) was developed for overcoming the drawbacks of the supervised deep learning technologies and reducing noise in CT images. The DRL model was consisted of shared, value and policy networks, and the networks included convolutional layers, rectified linear unit (ReLU), dilation factors and gate rotation unit (GRU) in order to extract noise features from CT images and improve the performance of the DRL model. Also, the quality of the CT images obtained by using the DRL model was compared to that obtained by using the supervised deep learning model. The results showed that the image accuracy for the DRL model was higher than that for the supervised deep learning model, and the image noise for the DRL model was smaller than that for the supervised deep learning model. Also, the DRL model reduced the noise of the CT images, which had different characteristics with training images. Therefore, the DRL model is able to reduce image noise as well as maintain the structural information of CT images.

Evaluation of Classification Performance of Inception V3 Algorithm for Chest X-ray Images of Patients with Cardiomegaly (심장비대증 환자의 흉부 X선 영상에 대한 Inception V3 알고리즘의 분류 성능평가)

  • Jeong, Woo-Yeon;Kim, Jung-Hun;Park, Ji-Eun;Kim, Min-Jeong;Lee, Jong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.455-461
    • /
    • 2021
  • Cardiomegaly is one of the most common diseases seen on chest X-rays, but if it is not detected early, it can cause serious complications. In view of this, in recent years, many researches on image analysis in which deep learning algorithms using artificial intelligence are applied to medical care have been conducted with the development of various science and technology fields. In this paper, we would like to evaluate whether the Inception V3 deep learning model is a useful model for the classification of Cardiomegaly using chest X-ray images. For the images used, a total of 1026 chest X-ray images of patients diagnosed with normal heart and those diagnosed with Cardiomegaly in Kyungpook National University Hospital were used. As a result of the experiment, the classification accuracy and loss of the Inception V3 deep learning model according to the presence or absence of Cardiomegaly were 96.0% and 0.22%, respectively. From the research results, it was found that the Inception V3 deep learning model is an excellent deep learning model for feature extraction and classification of chest image data. The Inception V3 deep learning model is considered to be a useful deep learning model for classification of chest diseases, and if such excellent research results are obtained by conducting research using a little more variety of medical image data, I think it will be great help for doctor's diagnosis in future.

Detection of Plastic Greenhouses by Using Deep Learning Model for Aerial Orthoimages (딥러닝 모델을 이용한 항공정사영상의 비닐하우스 탐지)

  • Byunghyun Yoon;Seonkyeong Seong;Jaewan Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • The remotely sensed data, such as satellite imagery and aerial photos, can be used to extract and detect some objects in the image through image interpretation and processing techniques. Significantly, the possibility for utilizing digital map updating and land monitoring has been increased through automatic object detection since spatial resolution of remotely sensed data has improved and technologies about deep learning have been developed. In this paper, we tried to extract plastic greenhouses into aerial orthophotos by using fully convolutional densely connected convolutional network (FC-DenseNet), one of the representative deep learning models for semantic segmentation. Then, a quantitative analysis of extraction results had performed. Using the farm map of the Ministry of Agriculture, Food and Rural Affairsin Korea, training data was generated by labeling plastic greenhouses into Damyang and Miryang areas. And then, FC-DenseNet was trained through a training dataset. To apply the deep learning model in the remotely sensed imagery, instance norm, which can maintain the spectral characteristics of bands, was used as normalization. In addition, optimal weights for each band were determined by adding attention modules in the deep learning model. In the experiments, it was found that a deep learning model can extract plastic greenhouses. These results can be applied to digital map updating of Farm-map and landcover maps.

Deep Learning in Thyroid Ultrasonography to Predict Tumor Recurrence in Thyroid Cancers (인공지능 딥러닝을 이용한 갑상선 초음파에서의 갑상선암의 재발 예측)

  • Jieun Kil;Kwang Gi Kim;Young Jae Kim;Hye Ryoung Koo;Jeong Seon Park
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.5
    • /
    • pp.1164-1174
    • /
    • 2020
  • Purpose To evaluate a deep learning model to predict recurrence of thyroid tumor using preoperative ultrasonography (US). Materials and Methods We included representative images from 229 US-based patients (male:female = 42:187; mean age, 49.6 years) who had been diagnosed with thyroid cancer on preoperative US and subsequently underwent thyroid surgery. After selecting each representative transverse or longitudinal US image, we created a data set from the resulting database of 898 images after augmentation. The Python 2.7.6 and Keras 2.1.5 framework for neural networks were used for deep learning with a convolutional neural network. We compared the clinical and histological features between patients with and without recurrence. The predictive performance of the deep learning model between groups was evaluated using receiver operating characteristic (ROC) analysis, and the area under the ROC curve served as a summary of the prognostic performance of the deep learning model to predict recurrent thyroid cancer. Results Tumor recurrence was noted in 49 (21.4%) among the 229 patients. Tumor size and multifocality varied significantly between the groups with and without recurrence (p < 0.05). The overall mean area under the curve (AUC) value of the deep learning model for prediction of recurrent thyroid cancer was 0.9 ± 0.06. The mean AUC value was 0.87 ± 0.03 in macrocarcinoma and 0.79 ± 0.16 in microcarcinoma. Conclusion A deep learning model for analysis of US images of thyroid cancer showed the possibility of predicting recurrence of thyroid cancer.

Development of a Ream-time Facial Expression Recognition Model using Transfer Learning with MobileNet and TensorFlow.js (MobileNet과 TensorFlow.js를 활용한 전이 학습 기반 실시간 얼굴 표정 인식 모델 개발)

  • Cha Jooho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.245-251
    • /
    • 2023
  • Facial expression recognition plays a significant role in understanding human emotional states. With the advancement of AI and computer vision technologies, extensive research has been conducted in various fields, including improving customer service, medical diagnosis, and assessing learners' understanding in education. In this study, we develop a model that can infer emotions in real-time from a webcam using transfer learning with TensorFlow.js and MobileNet. While existing studies focus on achieving high accuracy using deep learning models, these models often require substantial resources due to their complex structure and computational demands. Consequently, there is a growing interest in developing lightweight deep learning models and transfer learning methods for restricted environments such as web browsers and edge devices. By employing MobileNet as the base model and performing transfer learning, our study develops a deep learning transfer model utilizing JavaScript-based TensorFlow.js, which can predict emotions in real-time using facial input from a webcam. This transfer model provides a foundation for implementing facial expression recognition in resource-constrained environments such as web and mobile applications, enabling its application in various industries.

Method of an Assistance for Evaluation of Learning using Expression Recognition based on Deep Learning (심층학습 기반 표정인식을 통한 학습 평가 보조 방법 연구)

  • Lee, Ho-Jung;Lee, Deokwoo
    • Journal of Engineering Education Research
    • /
    • v.23 no.2
    • /
    • pp.24-30
    • /
    • 2020
  • This paper proposes the approaches to the evaluation of learning using concepts of artificial intelligence. Among various techniques, deep learning algorithm is employed to achieve quantitative results of evaluation. In particular, this paper focuses on the process-based evaluation instead of the result-based one using face expression. The expression is simply acquired by digital camera that records face expression when students solve sample test problems. Face expressions are trained using convolutional neural network (CNN) model followed by classification of expression data into three categories, i.e., easy, neutral, difficult. To substantiate the proposed approach, the simulation results show promising results, and this work is expected to open opportunities for intelligent evaluation system in the future.

A Study of Machine Learning based Face Recognition for User Authentication

  • Hong, Chung-Pyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.96-99
    • /
    • 2020
  • According to brilliant development of smart devices, many related services are being devised. And, almost every service is designed to provide user-centric services based on personal information. In this situation, to prevent unintentional leakage of personal information is essential. Conventionally, ID and Password system is used for the user authentication. This is a convenient method, but it has a vulnerability that can cause problems due to information leakage. To overcome these problem, many methods related to face recognition is being researched. Through this paper, we investigated the trend of user authentication through biometrics and a representative model for face recognition techniques. One is DeepFace of FaceBook and another is FaceNet of Google. Each model is based on the concept of Deep Learning and Distance Metric Learning, respectively. And also, they are based on Convolutional Neural Network (CNN) model. In the future, further research is needed on the equipment configuration requirements for practical applications and ways to provide actual personalized services.