• Title/Summary/Keyword: deep Learning

Search Result 5,763, Processing Time 0.026 seconds

A Fundamental Study on the Prediction of Carbonation Progress Using Deep Learning Algorithm Considering Mixing Factors (배합인자를 고려한 딥러닝 알고리즘 기반 탄산화 진행 예측에 관한 기초적 연구)

  • Jung, Do-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.30-31
    • /
    • 2019
  • Carbonation of the root concrete reduces the durability of the reinforced concrete, and it is important to check the carbonation resistance of the concrete to ensure the durability of the reinforced concrete structure. In this study, a basic study on the prediction of carbonation progress was conducted by considering the mixing conditions of concrete using deep learning algorithm during the theory of artificial neural network theory. The data used in the experiment used values that converted the carbonation velocity coefficient obtained from the mixing conditions of concrete and the accelerated carbonation experiment into the actual environment. The analysis shows that the error rate of the deep learning model according to the Hidden Layer is the best for the model using five layers, and based on the five Hidden layers, we want to verify the predicted performance of the carbonation speed coefficient of the carbonation test specimen in which the exposure experiment took place in the real environment.

  • PDF

Implementation of Image Semantic Segmentation on Android Device using Deep Learning (딥-러닝을 활용한 안드로이드 플랫폼에서의 이미지 시맨틱 분할 구현)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.88-91
    • /
    • 2020
  • Image segmentation is the task of partitioning an image into multiple sets of pixels based on some characteristics. The objective is to simplify the image into a representation that is more meaningful and easier to analyze. In this paper, we apply deep-learning to pre-train the learning model, and implement an algorithm that performs image segmentation in real time by extracting frames for the stream input from the Android device. Based on the open source of DeepLab-v3+ implemented in Tensorflow, some convolution filters are modified to improve real-time operation on the Android platform.

A Basic Study on Estimation Method of Concrete Compressive Strength Based on Deep Learning Algorithm Considering Mixture Factor (배합 인자를 고려한 Deep Learning Algorithm을 이용한 콘크리트 압축강도 추정 기법에 관한 기초적 연구)

  • Lee, Seung-Jun;Kim, In-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.83-84
    • /
    • 2017
  • In the construction site, it is necessary to estimate the compressive strength of concrete in order to adjust the demolding time of the form, and establish and adjust the construction schedule. The compressive strength of concrete is determined by various influencing factors. However, the conventional method for estimating the compressive strength of concrete has been suggested by considering only 1 to 3 specific influential factors as variables. In this study, seven influential factors (W/B ratio, Water, Cement, Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at three conferences in order to know the various correlations among data and the tendency of data. The purpose of this paper is to estimate compressive strength more accurately by applying it to algorithm of the Deep learning.

  • PDF

Text Categorization with Improved Deep Learning Methods

  • Wang, Xingfeng;Kim, Hee-Cheol
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.106-113
    • /
    • 2018
  • Although deep learning methods of convolutional neural networks (CNNs) and long-/short-term memory (LSTM) are widely used for text categorization, they still have certain shortcomings. CNNs require that the text retain some order, that the pooling lengths be identical, and that collateral analysis is impossible; In case of LSTM, it requires the unidirectional operation and the inputs/outputs are very complex. Against these problems, we thus improved these traditional deep learning methods in the following ways: We created collateral CNNs accepting disorder and variable-length pooling, and we removed the input/output gates when creating bidirectional LSTMs. We have used four benchmark datasets for topic and sentiment classification using the new methods that we propose. The best results were obtained by combining LTSM regional embeddings with data convolution. Our method is better than all previous methods (including deep learning methods) in terms of topic and sentiment classification.

Research Trends of Deep Learning-based Mobile Communication Technology (심화 학습 기반 이동통신기술 연구 동향)

  • Kwon, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.71-86
    • /
    • 2019
  • The unprecedented demands of mobile communication networks by the rapid rising popularity of mobile applications and services require future networks to support the exploding mobile traffic volumes, the real time extraction of fine-rained analytics, and the agile management of network resources, so as to maximize user experience. To fulfill these needs, research on the use of emerging deep learning techniques in future mobile systems has recently emerged; as such, this study deals with deep learning based mobile communication research activities. A thorough survey of the literature, conference, and workshops on deep learning for mobile communication networks is conducted. Finally, concluding remarks describe the major future research directions in this field.

Bark Identification Using a Deep Learning Model (심층 학습 모델을 이용한 수피 인식)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1133-1141
    • /
    • 2019
  • Most of the previous studies for bark recognition have focused on the extraction of LBP-like statistical features. Deep learning approach was not well studied because of the difficulty of acquiring large volume of bark image dataset. To overcome the bark dataset problem, this study utilizes the MobileNet which was trained with the ImageNet dataset. This study proposes two approaches. One is to extract features by the pixel-wise convolution and classify the features with SVM. The other is to tune the weights of the MobileNet by flexibly freezing layers. The experimental results with two public bark datasets, BarkTex and Trunk12, show that the proposed methods are effective in bark recognition. Especially the results of the flexible tunning method outperform state-of-the-art methods. In addition, it can be applied to mobile devices because the MobileNet is compact compared to other deep learning models.

Bio-Cell Image Segmentation based on Deep Learning using Denoising Autoencoder and Graph Cuts (디노이징 오토인코더와 그래프 컷을 이용한 딥러닝 기반 바이오-셀 영상 분할)

  • Lim, Seon-Ja;Vununu, Caleb;Kwon, Oh-Heum;Lee, Suk-Hwan;Kwon, Ki-Ryoug
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1326-1335
    • /
    • 2021
  • As part of the cell division method, we proposed a method for segmenting images generated by topography microscopes through deep learning-based feature generation and graph segmentation. Hybrid vector shapes preserve the overall shape and boundary information of cells, so most cell shapes can be captured without any post-processing burden. NIH-3T3 and Hela-S3 cells have satisfactory results in cell description preservation. Compared to other deep learning methods, the proposed cell image segmentation method does not require postprocessing. It is also effective in preserving the overall morphology of cells and has shown better results in terms of cell boundary preservation.

Analysis of Deep Learning Methods for Classification and Detection of Malware

  • Moon, Phil-Joo
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.291-297
    • /
    • 2021
  • Recently, as the number of new and variant malicious codes has increased exponentially, malware warnings are being issued to PC and smartphone users. Malware is becoming more and more intelligent. Efforts to protect personal information are becoming more and more important as social issues are used to stimulate the interest of PC users and allow users to directly download malicious codes. In this way, it is difficult to prevent malicious code because malicious code infiltrates in various forms. As a countermeasure to solve these problems, many studies are being conducted to apply deep learning. In this paper, we investigate and analyze various deep learning methods to detect and classify malware.

Deep Learning and Color Histogram based Fire and Smoke Detection Research

  • Lee, Yeunghak;Shim, Jaechang
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.116-125
    • /
    • 2019
  • The fire should extinguish as soon as possible because it causes economic loss and loses precious life. In this study, we propose a new atypical fire and smoke detection algorithm using deep learning and color histogram of fire and smoke. First, input frame images obtain from the ONVIF surveillance camera mounted in factory search motion candidate frame by motion detection algorithm and mean square error (MSE). Second deep learning (Faster R-CNN) is used to extract the fire and smoke candidate area of motion frame. Third, we apply a novel algorithm to detect the fire and smoke using color histogram algorithm with local area motion, similarity, and MSE. In this study, we developed a novel fire and smoke detection algorithm applied the local motion and color histogram method. Experimental results show that the surveillance camera with the proposed algorithm showed good fire and smoke detection results with very few false positives.

Object Recognition and Pose Estimation Based on Deep Learning for Visual Servoing (비주얼 서보잉을 위한 딥러닝 기반 물체 인식 및 자세 추정)

  • Cho, Jaemin;Kang, Sang Seung;Kim, Kye Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, smart factories have attracted much attention as a result of the 4th Industrial Revolution. Existing factory automation technologies are generally designed for simple repetition without using vision sensors. Even small object assemblies are still dependent on manual work. To satisfy the needs for replacing the existing system with new technology such as bin picking and visual servoing, precision and real-time application should be core. Therefore in our work we focused on the core elements by using deep learning algorithm to detect and classify the target object for real-time and analyzing the object features. We chose YOLO CNN which is capable of real-time working and combining the two tasks as mentioned above though there are lots of good deep learning algorithms such as Mask R-CNN and Fast R-CNN. Then through the line and inside features extracted from target object, we can obtain final outline and estimate object posture.