• Title/Summary/Keyword: deep Learning

Search Result 5,763, Processing Time 0.029 seconds

Study for Prediction System of Learning Achievements of Cyber University Students using Deep Learning based on Autoencoder (오토인코더에 기반한 딥러닝을 이용한 사이버대학교 학생의 학업 성취도 예측 분석 시스템 연구)

  • Lee, Hyun-Jin
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1115-1121
    • /
    • 2018
  • In this paper, we have studied a data analysis method by deep learning to predict learning achievements based on accumulated data in cyber university learning management system. By predicting learner's academic achievement, it can be used as a tool to enhance learner's learning and improve the quality of education. In order to improve the accuracy of prediction of learning achievements, the autoencoder based attendance prediction method is developed to improve the prediction performance and deep learning algorithm with ongoing evaluation metrics and predicted attendance are used to predict the final score. In order to verify the prediction results of the proposed method, the final grade was predicted by using the evaluation factor attendance data of the learning process. The experimental result showed that we can predict the learning achievements in the middle of semester.

Deep learning-based sensor fault detection using S-Long Short Term Memory Networks

  • Li, Lili;Liu, Gang;Zhang, Liangliang;Li, Qing
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.51-65
    • /
    • 2018
  • A number of sensing techniques have been implemented for detecting defects in civil infrastructures instead of onsite human inspections in structural health monitoring. However, the issue of faults in sensors has not received much attention. This issue may lead to incorrect interpretation of data and false alarms. To overcome these challenges, this article presents a deep learning-based method with a new architecture of Stateful Long Short Term Memory Neural Networks (S-LSTM NN) for detecting sensor fault without going into details of the fault features. As LSTMs are capable of learning data features automatically, and the proposed method works without an accurate mathematical model. The detection of four types of sensor faults are studied in this paper. Non-stationary acceleration responses of a three-span continuous bridge when under operational conditions are studied. A deep network model is applied to the measured bridge data with estimation to detect the sensor fault. Another set of sensor output data is used to supervise the network parameters and backpropagation algorithm to fine tune the parameters to establish a deep self-coding network model. The response residuals between the true value and the predicted value of the deep S-LSTM network was statistically analyzed to determine the fault threshold of sensor. Experimental study with a cable-stayed bridge further indicated that the proposed method is robust in the detection of the sensor fault.

Robust Deep Age Estimation Method Using Artificially Generated Image Set

  • Jang, Jaeyoon;Jeon, Seung-Hyuk;Kim, Jaehong;Yoon, Hosub
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.643-651
    • /
    • 2017
  • Human age estimation is one of the key factors in the field of Human-Robot Interaction/Human-Computer Interaction (HRI/HCI). Owing to the development of deep-learning technologies, age recognition has recently been attempted. In general, however, deep learning techniques require a large-scale database, and for age learning with variations, a conventional database is insufficient. For this reason, we propose an age estimation method using artificially generated data. Image data are artificially generated through 3D information, thus solving the problem of shortage of training data, and helping with the training of the deep-learning technique. Augmentation using 3D has advantages over 2D because it creates new images with more information. We use a deep architecture as a pre-trained model, and improve the estimation capacity using artificially augmented training images. The deep architecture can outperform traditional estimation methods, and the improved method showed increased reliability. We have achieved state-of-the-art performance using the proposed method in the Morph-II dataset and have proven that the proposed method can be used effectively using the Adience dataset.

Sound event classification using deep neural network based transfer learning (깊은 신경망 기반의 전이학습을 이용한 사운드 이벤트 분류)

  • Lim, Hyungjun;Kim, Myung Jong;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2016
  • Deep neural network that effectively capture the characteristics of data has been widely used in various applications. However, the amount of sound database is often insufficient for learning the deep neural network properly, so resulting in overfitting problems. In this paper, we propose a transfer learning framework that can effectively train the deep neural network even with insufficient sound event data by employing rich speech or music data. A series of experimental results verify that proposed method performs significantly better than the baseline deep neural network that was trained only with small sound event data.

Cloud Task Scheduling Based on Proximal Policy Optimization Algorithm for Lowering Energy Consumption of Data Center

  • Yang, Yongquan;He, Cuihua;Yin, Bo;Wei, Zhiqiang;Hong, Bowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1877-1891
    • /
    • 2022
  • As a part of cloud computing technology, algorithms for cloud task scheduling place an important influence on the area of cloud computing in data centers. In our earlier work, we proposed DeepEnergyJS, which was designed based on the original version of the policy gradient and reinforcement learning algorithm. We verified its effectiveness through simulation experiments. In this study, we used the Proximal Policy Optimization (PPO) algorithm to update DeepEnergyJS to DeepEnergyJSV2.0. First, we verify the convergence of the PPO algorithm on the dataset of Alibaba Cluster Data V2018. Then we contrast it with reinforcement learning algorithm in terms of convergence rate, converged value, and stability. The results indicate that PPO performed better in training and test data sets compared with reinforcement learning algorithm, as well as other general heuristic algorithms, such as First Fit, Random, and Tetris. DeepEnergyJSV2.0 achieves better energy efficiency than DeepEnergyJS by about 7.814%.

Development of Deep Learning-based Land Monitoring Web Service (딥러닝 기반의 국토모니터링 웹 서비스 개발)

  • In-Hak Kong;Dong-Hoon Jeong;Gu-Ha Jeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.275-284
    • /
    • 2023
  • Land monitoring involves systematically understanding changes in land use, leveraging spatial information such as satellite imagery and aerial photographs. Recently, the integration of deep learning technologies, notably object detection and semantic segmentation, into land monitoring has spurred active research. This study developed a web service to facilitate such integrations, allowing users to analyze aerial and drone images using CNN models. The web service architecture comprises AI, WEB/WAS, and DB servers and employs three primary deep learning models: DeepLab V3, YOLO, and Rotated Mask R-CNN. Specifically, YOLO offers rapid detection capabilities, Rotated Mask R-CNN excels in detecting rotated objects, while DeepLab V3 provides pixel-wise image classification. The performance of these models fluctuates depending on the quantity and quality of the training data. Anticipated to be integrated into the LX Corporation's operational network and the Land-XI system, this service is expected to enhance the accuracy and efficiency of land monitoring.

Improvement of the Convergence Rate of Deep Learning by Using Scaling Method

  • Ho, Jiacang;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.67-72
    • /
    • 2017
  • Deep learning neural network becomes very popular nowadays due to the reason that it can learn a very complex dataset such as the image dataset. Although deep learning neural network can produce high accuracy on the image dataset, it needs a lot of time to reach the convergence stage. To solve the issue, we have proposed a scaling method to improve the neural network to achieve the convergence stage in a shorter time than the original method. From the result, we can observe that our algorithm has higher performance than the other previous work.

Affective Computing Among Individuals in Deep Learning

  • Kim, Seong-Kyu (Steve)
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • This paper is a study of deep learning among artificial intelligence technology which has been developing many technologies recently. Especially, I am talking about emotional computing that has been mentioned a lot recently during deep learning. Emotional computing, in other words, is a passive concept that is dominated by people who scientifically analyze human sensibilities and reflect them in product development or system design, and a more active concept that studies how devices and systems understand humans and communicate with people in different modes. This emotional signal extraction, sensitivity, and psychology recognition technology is defined as a technology to process, analyze, and recognize psycho-sensitivity based on micro-small, hyper-sensor technology, and sensitive signals and information that can be sensed by the active movement of the autonomic nervous system caused by human emotional changes in everyday life. Chapter 1 talks about overview and Chapter 2 shows related research. Chapter 3 shows the problems and models of real emotional computing and Chapter 4 shows this paper as a conclusion.

Topic Modeling with Deep Learning-based Sentiment Filters (감정 딥러닝 필터를 활용한 토픽 모델링 방법론)

  • Choi, Byeong-Seol;Kim, Namgyu
    • The Journal of Information Systems
    • /
    • v.28 no.4
    • /
    • pp.271-291
    • /
    • 2019
  • Purpose The purpose of this study is to propose a methodology to derive positive keywords and negative keywords through deep learning to classify reviews into positive reviews and negative ones, and then refine the results of topic modeling using these keywords. Design/methodology/approach In this study, we extracted topic keywords by performing LDA-based topic modeling. At the same time, we performed attention-based deep learning to identify positive and negative keywords. Finally, we refined the topic keywords using these keywords as filters. Findings We collected and analyzed about 6,000 English reviews of Gyeongbokgung, a representative tourist attraction in Korea, from Tripadvisor, a representative travel site. Experimental results show that the proposed methodology properly identifies positive and negative keywords describing major topics.

A Basic Study on the Effect of Number of Hidden Layers on Performance of Estimation Model of Compressive Strength of Concrete Using Deep Learning Algorithms (Hidden Layer의 개수가 Deep Learning Algorithm을 이용한 콘크리트 압축강도 추정 모델의 성능에 미치는 영향에 관한 기초적 연구)

  • Lee, Seung-Jun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.130-131
    • /
    • 2018
  • The compressive strength of concrete is determined by various influencing factors. However, the conventional method for estimating the compressive strength of concrete has been suggested by considering only 1 to 3 specific influential factors as variables. In this study, nine influential factors (W/B ratio, Water, Cement, Aggregate(Coarse, Fine), Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at 4 conferences in order to know the various correlations among data and the tendency of data. The selected mixture and compressive strength data were learned using the Deep Learning Algorithm to derive an estimated function model. The purpose of this study is to investigate the effect of the number of hidden layers on the prediction performance in the process of estimating the compressive strength for an arbitrary combination.

  • PDF