• Title/Summary/Keyword: deep Learning

Search Result 5,763, Processing Time 0.031 seconds

Morphological analysis of virtual teeth generated by deep learning (딥러닝으로 생성된 가상 치아의 형태학적 분석 연구)

  • Eun-Jeong Bae
    • Journal of Technologic Dentistry
    • /
    • v.46 no.3
    • /
    • pp.93-100
    • /
    • 2024
  • Purpose: This study aimed to generate virtual mandibular first molars using deep learning technology, specifically deep convolutional generative adversarial network (DCGAN), and evaluate the accuracy and reliability of these virtual teeth by analyzing their morphological characteristics. These morphological characteristics were classified based on various evaluation criteria, facilitating the assessment of deep learning-based dental prosthesis production's practical applicability. Methods: Based on our previous research, 1,000 virtual mandibular first molars were generated, and based on morphological criteria, categorized as matching, non-matching, and partially matching. The generated first molars or the categorization of the generated molars were analyzed through the expert judgment of dental technicians. Results: Among the 1,000 generated virtual teeth, 143 (14.3%) met all five evaluation criteria, whereas 76 (7.6%) were judged as completely non-matching. The most frequent issue, with 781 (78.1%) instances, including some overlapping instances, was related to occlusal buccal cusp discrepancies. Conclusion: The study reveals the potential of DCGAN-generated virtual teeth as substitutes for real teeth; however, additional research and improvements in data quality are necessary to enhance accuracy. Continued data collection and refinement of generation methods can maximize the practicality and utility of deep learning-based dental prosthesis production.

Trends in quantum reinforcement learning: State-of-thearts and the road ahead

  • Soohyun Park;Joongheon Kim
    • ETRI Journal
    • /
    • v.46 no.5
    • /
    • pp.748-758
    • /
    • 2024
  • This paper presents the basic quantum reinforcement learning theory and its applications to various engineering problems. With the advances in quantum computing and deep learning technologies, various research works have focused on quantum deep learning and quantum machine learning. In this paper, quantum neural network (QNN)-based reinforcement learning (RL) models are discussed and introduced. Moreover, the pros of the QNN-based RL algorithms and models, such as fast training, high scalability, and efficient learning parameter utilization, are presented along with various research results. In addition, one of the well-known multi-agent extensions of QNN-based RL models, the quantum centralized-critic and multiple-actor network, is also discussed and its applications to multi-agent cooperation and coordination are introduced. Finally, the applications and future research directions are introduced and discussed in terms of federated learning, split learning, autonomous control, and quantum deep learning software testing.

Performance Verification of Deep Learning based Transmit Power Control (딥러닝 기반 송신전력 조절방안의 성능검증)

  • Lee, Woongsup;Kim, Seong Hwan;Ryu, Jongyeol;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.326-332
    • /
    • 2019
  • Recently, the deep learning technology has gained lots of attention which leads to its application to various fields. Especially, there are recent attempts to overcome the limit of wireless communications systems through the use of the deep learning. In this paper, we have verified the performance of deep learning based transmit power control scheme. Unlike previous transmit power control schemes where the optimal transmit power is derived by solving the optimization problem explicitly, in the deep learning based transmit power control, the general solver for the optimization problem is derived through the deep neural network (DNN). Especially, by using the spectral efficiency as the loss function of DNN, the training can be performed without needing labels. Through simulation based on Tensorflow, we confirm that the transmit power control based on deep learning can achieve the optimal performance while reducing the computational complexity by 1/200.

Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features

  • Kang, Jaeyong;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.37-44
    • /
    • 2021
  • Automatic classification of brain MRI images play an important role in early diagnosis of brain tumors. In this work, we present a deep learning-based brain tumor classification model in MRI images using ensemble of deep features. In our proposed framework, three different deep features from brain MR image are extracted using three different pre-trained models. After that, the extracted deep features are fed to the classification module. In the classification module, the three different deep features are first fed into the fully-connected layers individually to reduce the dimension of the features. After that, the output features from the fully-connected layers are concatenated and fed into the fully-connected layer to predict the final output. To evaluate our proposed model, we use openly accessible brain MRI dataset from web. Experimental results show that our proposed model outperforms other machine learning-based models.

Introduction to convolutional neural network using Keras; an understanding from a statistician

  • Lee, Hagyeong;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.591-610
    • /
    • 2019
  • Deep Learning is one of the machine learning methods to find features from a huge data using non-linear transformation. It is now commonly used for supervised learning in many fields. In particular, Convolutional Neural Network (CNN) is the best technique for the image classification since 2012. For users who consider deep learning models for real-world applications, Keras is a popular API for neural networks written in Python and also can be used in R. We try examine the parameter estimation procedures of Deep Neural Network and structures of CNN models from basics to advanced techniques. We also try to figure out some crucial steps in CNN that can improve image classification performance in the CIFAR10 dataset using Keras. We found that several stacks of convolutional layers and batch normalization could improve prediction performance. We also compared image classification performances with other machine learning methods, including K-Nearest Neighbors (K-NN), Random Forest, and XGBoost, in both MNIST and CIFAR10 dataset.

Comparison of CNN Structures for Detection of Surface Defects (표면 결함 검출을 위한 CNN 구조의 비교)

  • Choi, Hakyoung;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1100-1104
    • /
    • 2017
  • A detector-based approach shows the limited performances for the defect inspections such as shallow fine cracks and indistinguishable defects from background. Deep learning technique is widely used for object recognition and it's applications to detect defects have been gradually attempted. Deep learning requires huge scale of learning data, but acquisition of data can be limited in some industrial application. The possibility of applying CNN which is one of the deep learning approaches for surface defect inspection is investigated for industrial parts whose detection difficulty is challenging and learning data is not sufficient. VOV is adopted for pre-processing and to obtain a resonable number of ROIs for a data augmentation. Then CNN method is applied for the classification. Three CNN networks, AlexNet, VGGNet, and mofified VGGNet are compared for experiments of defects detection.

Garbage Dumping Detection System using Articular Point Deep Learning (관절점 딥러닝을 이용한 쓰레기 무단 투기 적발 시스템)

  • MIN, Hye Won;LEE, Hyoung Gu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1508-1517
    • /
    • 2021
  • In CCTV environments, a lot of learning image data is required to monitor illegal dumping of garbage with a typical image-based object detection using deep learning method. In this paper, we propose a system to monitor unauthorized dumping of garbage by learning the articular points of the person using only a small number of images without immediate use of the image for deep learning. In experiment, the proposed system showed 74.97% of garbage dumping detection performance with only a relatively small amount of image data in CCTV environments.

A Study of Video-Based Abnormal Behavior Recognition Model Using Deep Learning

  • Lee, Jiyoo;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.115-119
    • /
    • 2020
  • Recently, CCTV installations are rapidly increasing in the public and private sectors to prevent various crimes. In accordance with the increasing number of CCTVs, video-based abnormal behavior detection in control systems is one of the key technologies for safety. This is because it is difficult for the surveillance personnel who control multiple CCTVs to manually monitor all abnormal behaviors in the video. In order to solve this problem, research to recognize abnormal behavior using deep learning is being actively conducted. In this paper, we propose a model for detecting abnormal behavior based on the deep learning model that is currently widely used. Based on the abnormal behavior video data provided by AI Hub, we performed a comparative experiment to detect anomalous behavior through violence learning and fainting in videos using 2D CNN-LSTM, 3D CNN, and I3D models. We hope that the experimental results of this abnormal behavior learning model will be helpful in developing intelligent CCTV.

CNN model transition learning comparative analysis based on deep learning for image classification (이미지 분류를 위한 딥러닝 기반 CNN모델 전이 학습 비교 분석)

  • Lee, Dong-jun;Jeon, Seung-Je;Lee, DongHwi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.370-373
    • /
    • 2022
  • Recently, various deep learning framework models such as Tensorflow, Pytorch, Keras, etc. have appeared. In addition, CNN (Convolutional Neural Network) is applied to image recognition using frameworks such as Tensorflow, Pytorch, and Keras, and the optimization model in image classification is mainly used. In this paper, based on the results of training the CNN model with the Paitotchi and tensor flow frameworks most often used in the field of deep learning image recognition, the two frameworks are compared and analyzed for image analysis. Derived an optimized framework.

  • PDF

Comparison of Deep Learning Loss Function Performance for Medical Video Biomarker Extraction (의료 영상 바이오마커 추출을 위한 딥러닝 손실함수 성능 비교)

  • Seo, Jin-beom;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.72-74
    • /
    • 2021
  • The deep learning process currently utilized in various fields consists of data preparation, data preprocessing, model generation, model learning, and model evaluation. In the process of model learning, the loss function compares the value of the model with the actual value and outputs the difference. In this paper, we analyze various loss functions used in the deep learning model for biomarker extraction, which measure the degree of loss of neural network output values, and try to find the best loss function through experiments.

  • PDF