• Title/Summary/Keyword: decrypt testing

Search Result 2, Processing Time 0.015 seconds

Improving Security in Ciphertext-Policy Attribute-Based Encryption with Hidden Access Policy and Testing

  • Yin, Hongjian;Zhang, Leyou;Cui, Yilei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2768-2780
    • /
    • 2019
  • Ciphertext-policy attribute-based encryption (CP-ABE) is one of the practical technologies to share data over cloud since it can protect data confidentiality and support fine-grained access control on the encrypted data. However, most of the previous schemes only focus on data confidentiality without considering data receiver privacy preserving. Recently, Li et al.(in TIIS, 10(7), 2016.7) proposed a CP-ABE with hidden access policy and testing, where they declare their scheme achieves privacy preserving for the encryptor and decryptor, and also has high decryption efficiency. Unfortunately, in this paper, we show that their scheme fails to achieve hidden access policy at first. It means that any adversary can obtain access policy information by a simple decisional Diffie-Hellman test (DDH-test) attack. Then we give a method to overcome this shortcoming. Security and performance analyses show that the proposed scheme not only achieves the privacy protection for users, but also has higher efficiency than the original one.

Ciphertext-Policy Attribute-Based Encryption with Hidden Access Policy and Testing

  • Li, Jiguo;Wang, Haiping;Zhang, Yichen;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3339-3352
    • /
    • 2016
  • In ciphertext-policy attribute-based encryption (CP-ABE) scheme, a user's secret key is associated with a set of attributes, and the ciphertext is associated with an access policy. The user can decrypt the ciphertext if and only if the attribute set of his secret key satisfies the access policy specified in the ciphertext. In the present schemes, access policy is sent to the decryptor along with the ciphertext, which means that the privacy of the encryptor is revealed. In order to solve such problem, we propose a CP-ABE scheme with hidden access policy, which is able to preserve the privacy of the encryptor and decryptor. And what's more in the present schemes, the users need to do excessive calculation for decryption to check whether their attributes match the access policy specified in the ciphertext or not, which makes the users do useless computation if the attributes don't match the hidden access policy. In order to solve efficiency issue, our scheme adds a testing phase to avoid the unnecessary operation above before decryption. The computation cost for the testing phase is much less than the decryption computation so that the efficiency in our scheme is improved. Meanwhile, our new scheme is proved to be selectively secure against chosen-plaintext attack under DDH assumption.