• Title/Summary/Keyword: deck stresses

Search Result 65, Processing Time 0.036 seconds

A Study for The Optimal Detail on Intersectin of Longitudinal-Transversal Rib in Orthotropic Steel Deck Bridge, Bulkhead Plate Reinforced. (벌크헤드 플레이트로 보강된 강바닥판교의 종리브-횡리브 교차연결부의 최적상세 연구)

  • 공병승;윤성운
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.177-184
    • /
    • 2004
  • Orthotropic steel deck bridge has much advantages such as the light deadweight, so the construction of orthotropic steel deck is profitable for the long-span bridges Although the system has a lot of merits, it happens some damages by the traffic density and the fatigue cracks of welding. The cross-connection of longitudinal rib and transversal rib is one of the weakest at the fatigue. The secondary stresses which are from the out-plane deformation of transversal rib and the torsion of longitudinal rib make the topical stress concentration phenomenon. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This study with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and the cross-connection area of longitudinal and transversal rib

  • PDF

Crack Control of Early-Age High Strength Concrete Deck in Composite Bridge (합성거더교 초기재령 고강도 콘크리트 바닥판의 균열 제어)

  • Bae, Sung-Geun;Kim, Se-Hun;Jeong, Sang-Kyoon;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.493-496
    • /
    • 2008
  • The risk of transverse cracking in concrete decks of composite bridges is affected by many factors related to the bridge design, materials, and construction. Among others, the thermal and shrinkage stresses are the most important factors that affect the transverse cracking in early-age concrete decks. The thermal stress at the concrete deck is mainly affected by both ambient temperature and solar radiation. The shrinkage stress at the general strength concrete deck is mainly affected by drying shrinkage and the high strength concrete deck is mainly affected by autogeneous shrinkage. Three-dimensional finite element models of composite bridges were made to investigate the stress due to thermal and shrinkage stress.

  • PDF

Analysis Study on Fatigue Stress on the Orthotropic Steel Deck Applied Polymer Concrete Pavement (폴리머 콘크리트 포장을 적용한 강바닥판의 피로응력에 관한 해석적 연구)

  • Han, Bum-Jin;Yoon, Sang-Il;Choi, Byung-Jin;Choi, Jin-Woong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.68-77
    • /
    • 2014
  • In this study, polysulfide epoxy polymer concrete was chosen as an ultra thin bridge deck overlay, and the effect of polymer concrete pavement on the fatigue stress range of the orthotropic steel deck was analyzed through the comparative analysis with epoxy asphalt pavement and SFRC pavement. Abaqus was used to estimate the fatigue stress range, and signed von-mises stress was used to estimate fatigue stress range according to pavement materials and thickness, considering there were multi axis stresses which have longitudinal and lateral direction on the welded parts of the steel deck.

Bond Stress-Strain Predict Model with Inner Cover Thickness of Steel Wire Used in Void Deck Plate (중공 데크플레이트에 사용된 철선의 내부피복두께에 따른 부착응력-변형률 예측모델)

  • Kim, Hee-Hyeon;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • In case of evaluating the bond stress of a void deck plate using a wire steel, there is no standard formula considering both the influence on the void and the type of the reinforcing bar. Therefore we proposed a model equation considered the bond characteristics of the void deck plate. A total of 46 specimens was carried out a direct pull-out test and the test variables were the presence of a void body, type of reinforcing bar, the inner cover thickness according to the location of reinforcing bars and bond region. As a result of the comparison between the steel bar and steel wire, the bond stress of the steel wire with the relative rib area of 0.071 is 4.5 ~ 28.58% lower than that of the steel bar with 0.092 and the bond stress reduction rate increases when the inner cover thickness is insufficient. In the case of the inner cover thickness of $1.7d_b$ and $2.7d_b$, the bond stress was reduced to 48.7 ~ 68.4%. In the inner cover thickness was $4.9d_b$ and $5.2d_b$, the bond stresses were equivalent to those of the solid specimens. It was confirmed that the average bond stress and strain were affected by the inner cover thickness. Therefore the predicted model for one module of the void deck plate is proposed and verified by considering the bond characteristics of the void deck plate.

Shear lag effects on wide U-section pre-stressed concrete light rail bridges

  • Boules, Philopateer F.;Mehanny, Sameh S.F.;Bakhoum, Mourad M.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.67-80
    • /
    • 2018
  • Recently, U-section decks have been more and more used in metro and light rail bridges as an innovative concept in bridge deck design and a successful alternative to conventional box girders because of their potential advantages. U-section may be viewed as a single vent box girder eliminating the top slab connecting the webs, with the moving vehicles travelling on the lower deck. U-section bridges thus solve many problems like limited vertical clearance underneath the bridge lowest point, besides providing built-in noise barriers. Beam theory in mechanics assumes that plane section remains plane after bending, but it was found that shearing forces produce shear deformations and the plane section does not remain plane. This phenomenon leads to distortion of the cross section. For a box or a U section, this distortion makes the central part of the slab lagging behind those parts closer to the webs and this is known as shear lag effect. A sample real-world double-track U-section metro bridge is modelled in this paper using a commercial finite element analysis program and is analysed under various loading conditions and for different geometric variations. The three-dimensional finite element analysis is used to demonstrate variations in the transverse bending moments in the deck as well as variations in the longitudinal normal stresses induced in the cross section along the U-girder's span thus capturing warping and shear lag effects which are then compared to the stresses calculated using conventional beam theory. This comparison is performed not only to locate the distortion, warping and shear lag effects typically induced in U-section bridges but also to assess the main parameters influencing them the most.

Theoretical Study on Interfacial Stresses at RC Beam Repair-Purpose Overlayed by Latex Modified Concrete (LMC로 덧씌우기 보수된 RC보의 계면응력에 관한 연구)

  • Kim, Hyun-Oh;Kim, Seong-Hwan;Kim, Dong-Ho;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.179-184
    • /
    • 2004
  • Each year, new technological advancements for repair-purpose are being introduced to overlay the old deterioration of RC bridge deck at highway by latex-modified concrete. The days may come when this old problem will be successfully resolved. While the experimental works and researches are very active at both laboratory and field, only a few theoretical studies were performed on interfacial problems, especially on stress distribution and concentration of RC beam overlayed by latex-modified concrete. The repaired and strengthened structures would induce a premature failure due to the stress concentration at the adhesive layer of different material before the design expected failure. This paper investigated and proposed an analytical model for predicting interfacial shear and normal stresses of RC beam repair-purpose overlayed by latex-modified concrete. This would be used for predicting interfacial stresses and preventing premature failure at interfaces. This study modified Smith-Teng method for applying to cementitious repairing material, which was based on a direct governing equation and linear-elastic approach for interfacial normal and shear stresses. The proposed theoretical model was verified using commercial FEA program, LUSAS, in terms of interfacial stresses predicted by the proposed model and calculated by LUSAS.

  • PDF

Evaluation of Proper Level of the Longitudinal Prestress for the Precast Deck of Railway Bridges Considering the Temperature Change (철도교용 프리케스트 바닥판의 온도변화를 고려한 적정한 종방향 프리스트레스 수준의 산정)

  • Jeon, Se Jin;Kim, Young Jin;Kim, Seong Woon;Kim, Cheol Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.499-509
    • /
    • 2006
  • Precast concrete deck has many advantages comparing with the in-situ concrete deck, and has been successfully applied to replacement of the deteriorated decks and to the newly constructed highway bridges in domestic region. In order to apply the precast decks into the railway bridges, however, differences of the load characteristics between the highway and the railway should be properly taken into account including the train load, longitudinal force of the continuous welded rail, acceleration or braking force, temperature change and shrinkage. Proper level of the longitudinal prestress of the tendons that can ensure integrity of the transverse joints in the deck system is of a primary importance. To this aim, the longitudinal tensile stresses induced by the design loads are derived using three-dimensional finite element analyses for the frequently adopted PSC composite girder railway bridge. The effect of the temperature change is also investigated considering the design codes and theoretical equations in an in-depth manner. The estimated proper prestress level to counteract those tensile stresses is above 2.4 MPa, which is similar to the case of the highway bridges.

An analytical study on behavior of the girder panel in simplified composite deck under construction loadings (가설하중 하에서 초간편 강합성 바닥판 거더패널의 거동에 관한 해석적 연구)

  • Han, Deuk-Cheon;Kim, Sang-Seup;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1537-1542
    • /
    • 2007
  • In this study, based on a I-roll embedded steel composite deck, it is suggested a new type of simplified composite deck and analyzed under construction loading. Using ABAQUS, it's estimated effects of welding amount of steel plate and I-section, existence of a hole of I-section's flange, and a location of hole. For a reasonable verification of modeling, compare Euler-Beam theory with F.E.M models. In result, it is verified that change of welding amount increase more maximum bending tension stresses at the central part's section of span when elements are partial-welded. Also, verify that deflection is slightly increased when a hole existed compared with no hole.

  • PDF

Improvements to the analysis of floorbeams with additional web cutouts for orthotropic plated decks with closed continuous ribs

  • De Corte, Wouter;Van Bogaert, Philippe
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Additional cutouts in the floorbeam webs of orthotropic plated bridge decks relieve the highly stressed lower flange of the ribs passing through these floorbeam webs from possible fatigue damage. Conversely, the floorbeam webs themselves suffer from high stress concentrations, especially along the free edges of the additional cutouts. These stresses result from a combination of direct introduction of vertical traffic loads in the weakened web and from the truss action of the floorbeam. The latter differs from a simple beam action due to the presence of the openings and corresponds more to the behaviour of a Vierendeel truss. Close assessment of the appearing stresses, highly relevant for fatigue resistance, requires the use of elaborate finite element modelling. However, a full finite element analysis merely provides the results of total stresses, leaving the researcher or designer the difficult task of finding the origin of these stress components. This paper presents a calculation method for cutout stresses based on a combination of a framework analysis and a two dimensional finite element analysis of much smaller parts of the floorbeam. This method provides more insight in the origin of the stress components, as well as it simplifies any comparison of different additional cutout geometries, independent of the floorbeam topology.

Kinematics and Structural Analysis for 5ton cargo-truck Elecrto-Hydraulic Sliding Deck Systems Manufacturing and Design of winch system for safety (5ton 카고트럭의 전동 유압 슬라이딩 데크 시스템 개발을 위한 기구학 해석 및 전산구조해석과 안전을 위한 윈치 시스템 설계)

  • Kim, Man-Jung;Song, Myung-Suk;Kim, Jong-Tae;Ryuh, Beom-Sahng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.73-80
    • /
    • 2019
  • In this paper, the basic design of the electric hydraulic sliding deck system was developed to develop the electric hydraulic sliding deck which can easily upgrade the loading and unloading of the agricultural machinery by modifying the load of the existing 5ton cargo truck. Through the kinematic analysis, The length and structure of the specimens were designed and the materials were selected for safety and economical efficiency through structural analysis. For the basic design of the sliding deck system, we surveyed the agricultural machinery to be transported and selected necessary elements. And have devised a system using a hydraulic cylinder that can meet selected factors. Through the simplified modeling and kinematic diagram, the operating structure of the sliding deck system was grasped and the minimum length and structure of the sliding deck were devised, In order to select the sliding deck material satisfying, four representative materials used in the automobile structure were selected. Selected the parts to be analyzed and compared the stresses and deformation amounts according to the material under the conditions of maximum load through simplified modeling. As a result, SS41P material was used to reduce the unit cost and to achieve safety. The winch system was designed and applied for moving up and down of the farm machinery which can not be operated.