• Title/Summary/Keyword: deck slab

Search Result 254, Processing Time 0.025 seconds

A study on the structural safety of middle slab in double deck tunnel under live loads (활하중에 대한 복층터널 슬래브의 구조적 안전성에 관한 연구)

  • Kim, Tae Kyun;Kim, Se Kwon;Kim, Hyun Jun;Kim, Chang Young;Yoo, Wan Kyu;Hwang, Sung-Pil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The purpose of this study is to analyze in advance the problems and improvements that may occur during the construction of intermediate slabs and the loading of intermediate slabs through the preliminary structural safety evaluation of intermediate slabs for Test bed structures in deep depth tunnels. The Test bed construction can verify and confirm the results of the design and construction technology development of large depth double deck tunnel through the process, and can also be used as a learning site for engineers and the general public to speed up the time of underground space development. There will be an opportunity to do this. In particular, the design load of middle slab built inside the circular deep-depth double-sided tunnel cross-section varies depending on the construction method and the construction equipment load used. Class 3 truck load of KL-510 assumed to be common load to upper and middle slab during loading and installation is loaded on upper and lower slab with different working position for each load combination Analyzed.

Correlation Analysis between Damage of Expansion Joints and Response of Deck in RC Slab Bridges (RC 슬래브교의 신축이음 손상과 바닥판 응답과의 상관관계 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Park, Ki-Tae;Jung, Kyu-San;Kim, Yu-Hee;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.245-253
    • /
    • 2021
  • RC slab bridges account for the largest portion of deteriorated bridges in Korea. However, most RC slabs are not included in the first and second classes of bridges, which are subject to bridge safety management and maintenance. The highest damaged components in highway bridges are the subsidiary facilities including expansion joints and bearings. In particular, leakage through expansion joints causes deterioration and cracks of concrete and exposure of reinforced bars. Therefore, this study analyzed the effect of adhesion damage at expansion joints on the response of the deck in RC slab bridges. When the spacing between the expansion joints at both ends was closely adhered, cracks occurred in the concrete at both ends of the deck due to the resistance rigidity at the expansion joints. Based on the response results, the correlation analysis between displacements in the longitudinal direction of the expansion joint and concrete stress at both ends of the deck for each damage scenario was performed to investigate the effect of the occurrence of damage on the bridge behavior. When expansion joint devices at both sides were damaged, the correlation between displacement and stress showed a low correlation of 0.18 when the vehicles proceeded along all the lanes. Compared with those in the intact state, the deflections of the deck in the damaged case at both sides showed a low correlation of 0.34 to 0.53 while the vehicle passed and 0.17 to 0.43 after the vehicle passed. This means that the occurrence of cracks in the ends of concrete changed the behavior of the deck. Therefore, data-deriven damage detection could be developed to manage the damage to expansion joints that cause damage and deterioration of the deck.

Quantified Evaluation on the Qualitative Criteria for the Selection of Appropriate Concrete Slab Form-works for Residential Buildings (델파이 기법을 이용한 정성적 공법 선정 요인의 정량적 평가 분석)

  • Lee, Kyung-Suk;Lee, Tae-Hee;Shin, Young-Keun;Kim, Tae-Hyung;Han, Seung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.136-144
    • /
    • 2011
  • The form-work operation of concrete structures is a major element determining the period and cost of construction projects. However, the selection of the appropriate form-work system is dependent on the experience of the site personnel only. In this paper, existing methods (Aluminum form, Sky deck) and new slab form-work methods (AFB: Aluminum panel Form with dropping Beam) were selected. Each method was estimated by means of Delphi techniques based on the qualitative analysis data. This paper suggests an evaluation methodology of slab form-work application in construction sites by calculating qualitative evaluation scores. The methodology finding quantified scores of qualitative criteria can be available to be applied to other construction operation evaluation methods.

An Experimental Study on the Development of Semi-Slim Composite Beam with Traperzodial Composite Deck Plate (골형 합성 테크플레이트를 사용한 반슬림 합성보의 개발에 관한 실험적 연구)

  • Bae, Kyu-Woong;Oh, Sang-Hoon;Heo, Byung-Wook;Yang, Myung-Sook
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.29-40
    • /
    • 2001
  • Steel frames are increasingly used in commercial buildings. and most steel frames are designed to achieve composite action with the concrete floor slab. The advantages of 'composite construction' are now well understood in terms of structural economy. good performance in service. and ease of construction. But. these conventional composite construction system are difficult to apply steel framed apartment due to their large depth. So. in this study we developed Semi Slim Floor system which could reduce the overall depth of composite beam. Semi Slim Floor system is a method of steel frame multi-story building construction in which the structural depth of each floor is minimised by incorporating the steel floor beams within the depth of the concrete floor slab. Twelve composite slab specimens with different deck-type. slab width. with or without stud bault and concrete topping thickness were tested to evaluate the flexural capacity.

  • PDF

A Study on the Modified Simple Truss Model to Predict the Punching Shear Strength of PSC Deck Slabs (PSC 바닥판의 뚫림전단강도 예측을 위한 단순트러스모델 개선 연구)

  • Park, Woo Jin;Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.67-73
    • /
    • 2015
  • In this paper, the simple truss model was modified to predict the punching shear strength of long-span prestressed concrete (PSC) deck slabs under wheel load including the effects of transverse prestressing and long span length between girders. The strength of the compressive zone arounding punching cone was evaluated by the stiffness of inclined strut which was modified by considering aging effective modulus. The stiffness of springs which control lateral displacement of the roller supports consists of the steel reinforcement and prestressing which passed through the punching cone. Initial angle of struts was determined by the experimental observation to compensate for uncertainties in the complexities of the punching shear. The validity of computed punching shear strength by modified simple truss model was shown by comparing with experimental results and the experimental results were also compared with existing punching shear equations to determine level of predictability. The modified simple truss model appeared to better predict the punching shear strength of PSC deck slabs than other available equations. The punching shear strength, which was determined by snap-through critical load of modified simple truss model, can be used effectively to examine punching shear strength of long span PSC deck slabs.

A Study on Static and Fatigue Behavior of Restrained Concrete Decks without Rebar by Steel Strap (Steel Strap으로 횡구속된 무철근 바닥판의 정적 및 피로거동 특성 연구)

  • Jo, Byung Wan;Kim, Cheol Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.137-147
    • /
    • 2012
  • In the steel-free bridge concrete deck, steel straps are generally used instead of conventional steel rebar while laterally restrained in the perpendicular direction to the traffic in order fir the arching effect of concrete deck. In this paper, the minimum amount of FRP bar is to be suggested based on the structural strength, crack propagation, stress level and others in order to control cracks. As a result of laboratory tests, the structural strength of deck with 0.15 percentage of steel strap showed improved structural strength including ductility. The long-term serviceability of steel strap deck with FRP bar proved to satisfy the requirements and to be structurally stable while showing the amount of crack and residual vertical displacement within the allowable limits after two million cyclic loadings. The structural failure of RC bridge deck is generally caused from the punching shear rather than moment. Therefore, the ultimate load at failure could be estimated using the shear strength formula in the two-way slab based on ACI and AASHTO criteria. However the design criteria tend to underestimate the shear strength since they don't consider the arching effects and nonlinear fracture in bridge deck with lateral confinement. In this paper, an equation to estimate the punching shear strength of steel strap deck is to be developed considering the actual failure geometries and effect of lateral confinement by strap while the results are verified in accordance with laboratory tests.

A Comparative Study on the Performance Evaluation of Concrete Slab for Bridge Deck Overlay (교면포장용 콘크리트 슬래브의 성능평가에 대한 비교 연구)

  • Lee, Ji-Hoon;Park, Joon-Suk;Kim, Doo-Hwan
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.483-486
    • /
    • 2007
  • The present study is an exploratory research concerned with evaluation of three types of high performance concrete for bridge deck applications. These include A-Type (silica fume 6%), B-Type (silica fume 6% plus fly ash 20%), C-Type (silica fume 6% plus blast-furnace slag 40%). Test results compare with Latex modified concrete (LMC) and Ordinary portland cement concrete (OPC). The results indicates that high performance concrete for bridge deck overlay shows the excellent mechanical and durability performance for LMC and OPC in case of static loading test. Analytical results are similar with experimental results. However there are relative errors of $1{\sim}4mm$ for deflection and maximum 12% for strain.

  • PDF

Experimental Study on Flexural Behavior of CFT Girder-Deck Composite Section (콘크리트 충전 강관 거더-바닥판 합성단면의 휨거동에 관한 실험적 연구)

  • Chin, Won-Jong;Kang, Jae-Yoon;Choi, Eun-Suk;Lee, Jung-Woo;Lee, Heung-Soo;Kwark, Jong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.166-169
    • /
    • 2006
  • A new bridge system described in this paper uses concrete-filled steel tube (CFT) girders as a replacement for conventional girders. Experimental investigations were carried out to comprehend the flexural behavior of CFT girder-slab deck composite section. The experimental investigation consisted of designing and constructing a test specimen and loading it to collapse in bending to check the applicability of the system. The test results showed that concrete filled steel tube girders have good ductility and maintain its strength up to the end of the loading. In the test, the flexural behavior of each specimen of CFT girder-deck composite section is identified.

  • PDF

The Fundamental Study on the Behavior of Deck Slab Reinforced Basalt Fiber (Basalt 콘크리트 섬유보강 상판의 거동에 관한 기초적 연구)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Basalt originates from volcanic magma and flood volcanoes, a very hot fluid or semifluid material under the earth's crust, solidified in the open air. Basalt is a common term used for a variety of volcanic rocks, which are gray, dark in colour, formed from the molten lava after solidification. Recently, attention has been devoted to continuous basalt fibers (CBF) whose primary advantage consists in their low cost, good resistance to acids and solvents, and good thermal stability. In order to investigate reinforcement effect, this paper did FEM analysis with shell element. The result were as follows; BCF deck plate did elastic behavior to 450 kN, reinforcement effect of basalt fiber (BF) was less. But BCF's perpendicular deflection occurred little about 23 mm comparing with RC deck plate in load 627 kN. Stiffness was very improved by basalt fiber reinforcement.

Flexural Behavior of Bridge Deck Concrete Reinforced with FRP Box and Plate (FRP Box와 판으로 보강된 교량 바닥판 콘크리트의 휨거동)

  • Nam J. H.;Jeong S. K.;Yoon S. J.;Kim B. S.;Cho K. H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.13-17
    • /
    • 2004
  • In recent years, the deterioration of reinforced concrete structures has become a serious problem in civil engineering fields. This situation is mainly due to corrosion of steel reinforcing bars embedded in concrete. Recently, there has been a greatly increased demand for the use of FRP (fiber reinforced plastic) in civil engineering field due to their superior mechanical and physical properties. This paper presents an experimental study on the behavior of concrete bridge deck reinforced with FRP Box, FRP Plate, and FRP Re-bar. In tlIe study, mechanical properties of FRP Box, FRP Plate, GFRP Re-bar, and CFRP Grid have been investigated. Full scale one-way deck slab was tested under four point lateral load (equivalent to actual wheel load of DB-24 including impact). Load-deflection and load-strain data were collected through LVDT's and strain gages attached to the specimen.

  • PDF