• Title/Summary/Keyword: deck design

Search Result 642, Processing Time 0.027 seconds

Determination of Effective Flange Width in Single Plane Cable-Stayed Concrete Bridge (1면 케이블 콘크리트 사장교의 유효플랜지폭 결정에 관한 연구)

  • Lee, Hwan-Woo;Kim, Kwang-Soo;Kang, Ho-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.343-351
    • /
    • 2010
  • Bending and axial compressive stresses are distributed across the whole upper flange of a box girder bridge which has the span-to-depth ratio (B/L) of below 0.5, according to Korea Bridge Design Specifications (Minister of Land, Transport and Maritime Affairs, 2005). Shear lag phenomenon, however, can take place in the construction phase of cable-stayed bridge, in which stresses combining bending moment due to dead weight and cable vertical compression are induced. This study aims to analyze the effective width of flange over which composite stresses are given, which should be calculated during the construction phase of stiffening girder of single plane cable-stayed box girder bridge. The study results indicate that the full width of stiffening girder can be regarded as the effective flange width when the span-to-depth ratio for the deck is below 0.38. In other words, the area, where shear lag is taken into consideration, is larger than the width of box girder in single plane cable-stayed box girder bridges. Therefore, the current practice of considering the full width as the effective flange width regardless of changes of the span-to-depth ratio during the construction stage can produce an unsafe bridge. If the effective flange width is determined according to the single span structural system in the early stage of construction when the span-to depth ratio for the deck is high and composite stresses of every part expect each end of the bridge are calculated, it can result in a safe structural design. Since the span-to-depth ratio gradually decreases, however, it is appropriate to determine the effective width of flange on the basis of the full width and the cantilever structural system.

A Study on Repair/ Retrofit for Deteriorations of Steel Bridge -Behavior Characteristics of Welded Joint Part of Flange and Repair/Retrofit of Fatigue Crack in Railway Steel Bridge- (강철도교 열화현상에 관한 보수/보강 연구 -강철도교의 플랜지 용접이음부의 거동 특성 및 피로균열 보수보강-)

  • Kyung, Kab Soo;Lee, Sung Jin;Park, Jin Eun;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.613-625
    • /
    • 2012
  • Since railway bridge frequently have a chance of passing train load close to design load, it is necessary to reflect sufficiently fatigue property in early design phase for many structural details. Nevertheless fatigue cracks are reported partly in deck plate girder of railway steel bridge because of the weight and arrangement of axial load acting on railway bridge, the application of improper structural details for fatigue problem etc.. One of main cause for fatigue crack at the welded part of upper flange and web is caused by the eccentricity action of train load due to the difference of center to center spacing between the main girder supporting sleeper and the rail acting train load. For the existing deck plate girder of railway steel bridge, in this study, field survey, field measurement and a series of structural analysis were performed. In addition, the characteristics of structural behavior, the causes and repair/ retrofit of fatigue crack were examined in the target bridge.

A Study on the Flexural Behavior of Plate Girder Bridge Decks Using a Macro-Element (매크로 요소를 사용한 판형교 바닥판의 휨거동 해석)

  • 최진유;양기재;박남회;강영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • Current specification prescribes that upper and lower reinforcement mat is required in the same amount to resist negative and positive moment in bridge decks. But the negative moment is much smaller than positive moment because the actual behavior of decks consists of local deflection of slab and global deflection of girder. From this study, the analysis method based on harmonic analysis and slope-deflection method was developed and verified by finite element method. The negative moment, obtained from this method, were smaller than those computed based on the KHBDC specifications as much as 40∼50% in the middle of bridge. The amount of reduction of the design negative moment was shown herein to be dependent on variable parameters as shape factor(S/L) of slab, relative stiffness ratio of girder and deck slab, and so on. This investigations indicate that the upper reinforcement mat to resist negative moment can be removed. But further experimental study is required to consider durability and serviceability. From this new design concept, the construction expense can be reduced and the problem of decreasing durability resulting from corrosion of upper reinforcement steel settled.

  • PDF

Characteristics of Korean Inshore Fishing Boats (한국(韓國) 연근해어선(沿近海漁船)의 특성(特性))

  • Keuck-Chun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.1
    • /
    • pp.67-94
    • /
    • 1971
  • Korean fisheries industry holds 57,255 boats amounting to 269,079 tons in gross as of the end of 1967. The boats of the size under 30G.T., about sixty-two per cent of the total in tonnage, are utilized in coastal and their contribution to the total production of Korean fisheries industry is estimated at over seventy-five percent. Hull forms and construction method of them are partly in transition stage to the western tradition from the oriental tradition, which employs the chine-type straight-framed section, and tick and wide wooden planking fastened on naturally bent timber frames. And only about a half of them are mechanized. About fifty-seven per cent, 7,525 boats amounting to 91,751 gross tons, of the coastal and inshore fishing boats are those of the size ranging 5G.T. to 30G.T., which are engaged mostly in draft-and gill-netting, angling, longlining, anchovy seining, squid fishing and set-netting. The important fishing boats forming main structure of the inshore fishing fleets can be classified as 5G.T.-class multi-purpose boats, 10G.T.-class angling/longlining boats and 20G.T.-class drift-/gill-netters mostly utilized in the east-sea, 15G.T.-class anchovy seiner in the south-sea-sea, 20G.T.- and 28G.T.-class stow-netters in the west sea. Each of the three sea regions, east, south, and west, of Korean water has distinctly different characters from one another in topography, geology and sea aspects, and consequently in marine resources, fishing grounds and fishing tactics desired. Hence, the finishing boats in each sea region have also their own characters in hull form, structural features, deck design and equipments. In this report, analyzing the characteristics of the existing inshore fishing boats ranging 5G.T. to 30G.T. in size from view points of naval architecture and engineering, the author made an integrated investigation of their characteristics, covering size and principal dimensions, hull form, deck design, structural features and mechanization, in close connection with the natural circumstances of Korean water and local techno-socio-economic problems, and, finally, made some suggestions for the rational improvement or modernization of the inshore fishing boats. Further details of the characteristics of Korean inshore finishing boats are referred to the drawings of them compiled by the author and given in the reference[23] listed at the end of this report.

  • PDF

A study on the program development for area optimizing of damper ports in road tunnels with transverse ventilation system (횡류식 도로터널의 급, 배기구 포트 개구면적 최적화 프로그램 개발 연구)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Min, Dea-Kee;Kim, Jong-Won;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.177-188
    • /
    • 2019
  • The purpose of the optimization of the installation of supply/exhaust ports for tunnels with transverse ventilation system is to supply fresh air from outside to inside of tunnels uniformly and exhaust pollutant from tunnels properly for creating safe and clean environment for tunnel users. For this purpose, a ventilation port area optimization program was developed to obtain a uniform supply or exhaust air volume inside a great depth double deck tunnel with transverse ventilation system. In order to area optimize the developed port sizing program, the wind velocity was measured in the duct of the currently operated tunnel with semi-transverse ventilation. Also 3D cfd was performed on the same tunnel and cfd results were compared to the measured value. As a result, the error rate between the predicted value from the program and measured value was 6.72%, while the error rate between the predicted value from the program and 3D cfd analysis value was 4.86%. Both of comparison results show less than 10% of error rate. Thus It is expected that supply/exhaust port optimization design of transverse ventilation tunnel can be possible with using this large exhaust port area optimization program.

Structural Characteristics Analysis of Steel Box Girder Bridge being stressed the PS Steel Wires at the Upper Slab of the Intermediate Support (지점부 상부슬래브에 PS강선 긴장된 강 박스거더교의 구조적 특성 분석)

  • Cha, Tae-Gweon;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • The concrete deck slab at the continuous span support of the steel box girder bridge is a structure that is combined with the upper flange. It is a structure that can cause tension cracks in the deck slab at the support causing problems such as durability degradation in long span bridges. This is because the tensile stress in the longitudinal direction of the slab exceeds the design tensile strength due to the effects of dead load and live load when applying a long span. Accordingly, it is necessary to control tensile cracking by adding a reinforcing bar in the axial direction to the slab at the support and to introduce additional compressive stress. To solve this problem, a structural system of a steel box girder bridge was proposed that introduces compressive stress as PS steel wire tension in the tensile stress section of the upper slab in the continuous support. The resulting structural performance was compared and verified through the finite element analysis and the steel wire tension test of the actual specimen. By introducing compressive stress that can control the tensile stress and cracking of the slab generated in the negative moment through the tension of the PS steel wire, it is possible to improve structural safety and strengthen durability compared to the existing steel box girder bridge.

Running Safety and Ride Comfort Prediction for a Highspeed Railway Bridge Using Deep Learning (딥러닝 기반 고속철도교량의 주행안전성 및 승차감 예측)

  • Minsu, Kim;Sanghyun, Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.375-380
    • /
    • 2022
  • High-speed railway bridges carry a risk of dynamic response amplification due to resonance caused by train loads, and running safety and riding comfort must therefore be reviewed through dynamic analysis in accordance with design codes. The running safety and ride comfort calculation procedure, however, is time consuming and expensive because dynamic analyses must be performed for every 10 km/h interval up to 110% of the design speed, including the critical speed for each train type. In this paper, a deep-learning-based prediction system that can predict the running safety and ride comfort in advance is proposed. The system does not use dynamic analysis but employs a deep learning algorithm. The proposed system is based on a neural network trained on the dynamic analysis results of each train and speed of the railway bridge and can predict the running safety and ride comfort according to input parameters such as train speed and bridge characteristics. To confirm the performance of the proposed system, running safety and riding comfort are predicted for a single span, straight simple beam bridge. Our results confirm that the deck vertical displacement and deck vertical acceleration for calculating running safety and riding comfort can be predicted with high accuracy.

Dynamic Load Allowance of Highway Bridges by Numerical Dynamic Analysis for LRFD Calibration (LRFD 보정을 위한 동적해석에 의한 도로교의 동적하중허용계수)

  • Chung, Tae Ju;Shin, Dong-Ku;Park, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.305-313
    • /
    • 2008
  • A reliability based calibration of dynamic load allowance (DLA) of highway bridge is performed by numerical dynamic analysis of various types of bridges taking into account of the road surface roughness and bridge-vehicle interaction. A total of 10 simply supported bridges with three girder types in the form of prestressed concrete girder, steel plate girder, and steel box girder is analyzed. The cross sections recommended in "The Standardized Design of Highway Bridge Superstructure" by the Korean Ministry of Construction are used for the prestressed concrete girder bridges and steel plate girder bridges while the box girder bridges are designed by the LRFD method. Ten sets of road surface roughness for each bridge are generated from power spectral density (PSD) function by assuming the roadway as "Average Road". A three dimensionally modeled 5-axle tractor-trailer with its gross weight the same as that of DB-24 design truck is used in the dynamic analysis. For the finite element modeling of superstructure, beam elements for the main girder, shell elements for concrete deck, and rigid links between main girder and concrete deck are used. The statistical mean and coefficient of variation of DLA are obtained from a total of 100 DLA results for 10 different bridges with each having 10 sets of road surface roughness. Applying the DLA statistics obtained, the DLA is finally calibrated in a reliability based LRFD format by using the formula developed in the calibration of OHBDC code.

The Walkable Green Street Design for "Dangjae-Gil" (당재길 걷고싶은 녹화거리 설계)

  • 김성균
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.52-60
    • /
    • 2002
  • This paper presents a streetscape design for "Dangiae-Gil"which is located at 126-1 Yangpyung-2dong, Yeongdeungpo-gu, Seoul and is about 500m in length and about 24m in width. The design goals are to make a green street on which people want to walk and people can walk and rest safely and pleasantly. To achieve these goals, concepts of environmentally-friendliness, placeness, safety, amenity, vitality, connectivity, and democracy are developed. For pedestrian safety, shared street concepts, such as crank, slalom etc. are adopted. The site is divided into 5 thematic spaces, such as "Village Entrance Space", "Culture Street", "Dangsan Park", "Nature Street", and "Ferry Space". The Village Entrance Space, which is an entrance of the Dangjae-Gil and a welcoming space, is for communicating information about the area. "Dangnamu"(zelkova tree) and signs are introduced here. The Culture Street is for experiencing past and present culture of the area. Colored tiles and plant boxes attached to benches are introduced. The Dangsan park is a sacred space where modem people can feel the sacredness of nature arid of being in a refuge. Dangjib, Dangnamu, multi-purpose plaza, athletic facilities, and playground for infants are introduced. The Nature Street is a space for feeling and teaming nature which has disappeared from the area leading to the river and a space for community participation. The elementary school walls were demolished and nature education spaces, such as butterfly and dragonfly garden, ecological pond, wildflower garden, etc., which are related to school education, are introduced. The Ferry Space is a space symbolizing a old ferry crossing and an entrance plaza to a bridge for "Sunyu-do\" . A boat-shaped deck, an elevator for handicap people, and parking space are introduced. In conclusion, sustainable management schemes for the site are suggested.sted.

Study of Structural Design of Polyethylene Pleasure Boat (폴리에틸렌 플레저 보트의 구조설계에 관한 연구)

  • Cho, Seok Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1551-1561
    • /
    • 2012
  • Boat or yacht hulls are mainly built using FRP composite materials. FRP boat hull manufacturing has been restricted since 2000 under international regulations on ocean environment safety. FRP composite materials cannot be recycled and require more than 100 years to biodegrade. Therefore, alternatives to FRP have been proposed by many boat builders. Steel, aluminum, and FRP are commonly used as boat hull materials. Their design specifications are proposed as Korean register of shipping. However, the design specifications for inexpensive materials for a small boat have not yet been studied. Small shipbuilders manufacture and sell HDPE canoes or HDPE kayaks. In this study, a hull form was designed based on actual boats. The thickness of an HDPE boat hull was determined based on ISO 12215-5 structural design specifications.