• 제목/요약/키워드: decision table

검색결과 213건 처리시간 0.023초

시장 환경이 인터넷 경로를 포함한 다중 경로 관리에 미치는 영향에 관한 연구: 게임 이론적 접근방법 (The Impact of Market Environments on Optimal Channel Strategy Involving an Internet Channel: A Game Theoretic Approach)

  • 유원상
    • 한국유통학회지:유통연구
    • /
    • 제16권2호
    • /
    • pp.119-138
    • /
    • 2011
  • 지난 십년동안 인터넷을 통한 전자상거래는 빠른 속도로 성장해 왔다. 이러한 인터넷의 발달은 기업들의 사업방식에 많은 변화를 유도했으며, 그 중에서도 마케팅경로의 구조와 경로 구성원들 사이의 관계에 중요한 변화를 초래하고 있다. 각 기업이 처한 시장환경은 다양하며 이 다양한 시장 환경은 인터넷 경로가 각 시장에 미치는 효과를 조절하는 역할을 한다. 이러한 시장의 다양성에도 불구하고 지금까지의 선행연구들은 각기 특정한 하나의 시장상황(unique setting)을 상정하여 인터넷경로 도입이 그 시장에 미치는 영향을 분석하는데 그쳐왔다. 이러한 기존 연구의 공백을 채우기 위해 본 연구는 시장의 다양성을 소비자의 지리적 분포, 시장의 인터넷 수용도의 측면에서 살펴보고 이러한 시장 환경이 인터넷 경로 도입 효과에 미치는 영향에 관하여 조사해 보고자 한다. 이를 위해 본 연구는 다양한 소비자들의 지리적 분포, 경쟁강도, 소비자의 인터넷 상거래에 대한 수용도 등을 포함한 다양한 시장 환경을 수요모형에 반영시켜 그 영향력 분석을 가능하도록 하였다. 그러나, 다양한 시장 요소를 모형에 반영하는 과정에서 수요모형이 복잡한 구조를 가지게 되었다. 이 문제를 극복하고 게임이론의 균형해를 도출하기 위해 Newton-Raphson algorithm을 사용한 numerical search 방법을 사용하였다. 분석결과 두 종류의 경로에 대한 소비자선호의 분포에 따라 생산자의 가격차별정도, 생산자와 독립소매상 간의 경로이윤 배분율, 그리고 인터넷경로 도입이 각 경로주체의 이윤 향상에 도움이 되는지의 여부, 소비자잉여 등이 달라질 수 있음을 발견하였다. 끝으로 연구의 학술적, 실무적 시사점과 한계점 및 향후 연구방향도 논의되었다.

  • PDF

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

온라인 서비스 품질이 고객만족 및 충성의도에 미치는 영향 -항공권 예약.발권 웹사이트를 중심으로- (The Effects of Online Service Quality on Consumer Satisfaction and Loyalty Intention -About Booking and Issuing Air Tickets on Website-)

  • 박종기;고도은;이승창
    • 한국유통학회지:유통연구
    • /
    • 제15권3호
    • /
    • pp.71-110
    • /
    • 2010
  • 본 연구에서는 항공권 예약 발권 웹사이트의 서비스 품질을 측정 뿐만 아니라 서비스 회복도 측정하고자 하였다. 또한 서비스 품질과 서비스 회복이 고객만족 및 충성의도에 미치는 영향관계를 실증하고자 하였다. 온라인 서비스 품질과 온라인 서비스 회복의 측정을 위해 Parasuraman, Zeithaml, & Malhotra(2005)가 개발한 E-S-QUAL과 E-RecS-QUAL을 사용했으며, 했다. E-S-QUAL은 온라인 서비스 품질을 측정하는 도구로써, 효율성, 시스템 이용가능성, 이행성, 프라이버시의 4개 차원 22개 항목으로 구성된다. E-RecS-QUAL은 온라인 서비스 회복을 측정하는 도구로써, 반응, 보상, 접촉의 3개 차원 11개 항목으로 구성된다. 실증분석을 위한 설문조사는 항공사나 여행사의 웹사이트를 통해 국내 외 항공권을 구입해 본 경험이 있는 소비자를 대상으로 실시하였는데, 총 400부가 회수되었고, 이 중 342부를 최종분석에 사용하였다. 실증분석을 위해 AMOS 7.0과 SPSS 15.0을 사용하였다. 먼저, SPSS 15.0을 사용하여, 요인점수를 이용한 회귀분석으로 가설검증을 한 결과, <가설 I-1, 2, 3, 4, II-1, 2, 3, III-1, IV-1>이 전부 채택되었다. 온라인 서비스 품질과 온라인 서비스 회복의 각 차원은 모두 전반적인 서비스 품질에 유의한 영향을 보였고, 전반적인 서비스 품질은 고객만족에 유의한 영향을 미쳤다. 마지막으로 고객만족 역시 충성의도에 유의한 영향을 미치는 것으로 확인되었다. 한편 AMOS 7.0을 사용하여 모형 분석을 하였는데, 모형의 적합도는 가설검증을 하기에 합당한 수치가 나왔다. 이를 토대로 가설검증을 한 결과, <가설 I-1, 3, II-1, 3, III-1, IV-1>은 채택되었고, <가설 I-2, 4, II-2>는 기각되었다. 이 결과는 Parasuraman et al.(2005)이 주장한 것처럼 E-S-QUAL을 나타내는 데는 요인점수를 이용한 회귀분석이 더 적합하다는 것을 보여주는 것이라고 판단된다. 이를 토대로 본 연구의 시사점을 정리하였다.

  • PDF