대법원 2022. 12. 22. 선고 2016도21314 전원합의체 판결은 한의사가 진단용 초음파기기를 사용하여 자궁내막증식증을 진단한 것이 무면허의료행위가 아니라고 판단하였다. 이 판결은 서양의학에 속하는 영상의학적 방법을 사용한 특정 의료행위가 무면허의료행위가 아니라고 판단한 것이 아니라 진단용 초음파기기 사용만으로 서양의학에 속하는 영상의학적 진단행위가 있었다고 단정할 수 없고 그러한 사정은 검사가 구체적으로 특정하여 기소하고 증명하여야 함을 분명히 하는 취지라고 할 수 있고, 그러한 한 타당하다. 한의학계에서 주장해온 바와 같이 특정 기기 사용 자체를 금지하는 규정은 없는 것이다. 그러나 당해 사안에서 실제로 서양의학에 속하는 영상의학적 진단방법을 사용하였을 가능성이 상당하고 그러한 경우 무면허의료행위임 또한 분명하다. 지금까지 의료와 한방의료의 경계획정이 문제된 사안 중 상당수가 시험적 성격을 띤 반면, 위 사건의 의료행위는 다수의 한의원에서 널리 행해지고 있다고 의심된다는 점에서 일정한 대응이 필요하다. 나아가 실제로 서양의학에 속하는 영상의학적 진단방법을 쓴 것이 아니라 하더라도 여전히 문제가 있다. 다수의 한의원이 전체적으로 진단에 관한 한 서양의학에 속하는 영상진단을 하는 것처럼 오인하기 쉽게 하고 있는바, 이는 부정경쟁행위이자 의료 소비자의 실질적 선택권을 침해하는 행위이기 때문이다. 현행법상 무면허의료행위만으로 이 문제에 대응하는 데는 한계가 있을 뿐 아니라 장차 무면허의료행위 규율을 개선하는 방법으로 대응하는 것도 쉽지 아니하다. 별도의 규율장치를 도입할 필요가 있다.
온라인 배너 광고 산업에서는 일반적으로 복수의 배너 대안이 제작된다. 이때 중요한 의사결정은 어떤 광고 배너 대안을 선택해서 고객에게 노출하느냐 하는 것이다. 각 배너 대안을 고객이 클릭할 확률을 미리 알 수 없기 때문에 경영자는 실험적으로 여러 대안을 노출한 후, 고객의 클릭 여부에 따라 각 대안의 클릭 확률을 추정하며 최적의 대안을 찾아야 하고 이것은 온라인 광고와 관련된 강화학습 프로세스이다. 이 과정에서의 주요 의사결정 문제는 축적된 추정 클릭 확률 지식을 이용해서 최적의 대안을 노출하는 활용 전략과, 잠재적으로 더 우수한 대안을 찾기 위해 새로운 대안을 시도해보는 탐색 전략의 최적 균형점을 찾는 것이다. 본 연구는 구전효과와 대안의 수가 이러한 최적 탐색-활용 전략에 미치는 영향을 분석하였다. 이는 고객이 노출된 배너를 클릭하는 경우 관련 제품을 주위에 홍보하는 과정을 통해 광고 배너의 클릭률이 높아지는 구전효과를 온라인 광고 관련 강화학습에 추가하여 구현한 것이다. 분석을 위해 Multi-Armed Bandit 모형을 이용한 시뮬레이션 기법을 사용하였다. 분석 결과, 구전효과의 크기가 커지고 배너 대안의 수가 적을수록 광고 강화학습의 최적 탐색 수준이 높아지는 것이 관측되었다. 이는 구전효과에 의해 고객이 광고 배너를 클릭할 확률이 증가함에 따라 기존에 축적했던 추정 클릭률 지식의 가치가 낮아지고, 따라서 새로운 대안을 탐색하는 것의 가치가 증가하기 때문으로 분석되었다. 또한 광고 대안의 수가 작을 경우에는 구전효과 크기가 커질 때 최적 탐색 수준이 더 큰 폭으로 증가하는 경향을 발견하였다. 최근 온라인 구전으로 인해 구전효과의 영향이 커지는 시점에서 본 연구는 의미 있는 시사점을 제공한다.
회사채 신용등급은 투자자의 입장에서는 수익률 결정의 중요한 요소이며 기업의 입장에서는 자본비용 및 기업 가치와 관련된 중요한 재무의사결정사항으로 정교한 신용등급 예측 모형의 개발은 재무 및 회계 분야에서 오랫동안 전통적인 연구 주제가 되어왔다. 그러나, 회사채 신용등급 예측 모형의 성과와 관련된 가장 중요한 문제는 등급별 데이터의 불균형 문제이다. 예측 문제에 있어서 데이터 불균형(Data imbalance) 은 사용되는 표본이 특정 범주에 편중되었을 때 나타난다. 데이터 불균형이 심화됨에 따라 범주 사이의 분류경계영역이 왜곡되므로 분류자의 학습성과가 저하되게 된다. 본 연구에서는 데이터 불균형 문제가 존재하는 다분류 문제를 효과적으로 해결하기 위한 다분류 기하평균 부스팅 기법 (Multiclass Geometric Mean-based Boosting MGM-Boost)을 제안하고자 한다. MGM-Boost 알고리즘은 부스팅 알고리즘에 기하평균 개념을 도입한 것으로 오분류된 표본에 대한 학습을 강화할 수 있으며 불균형 분포를 보이는 각 범주의 예측정확도를 동시에 고려한 학습이 가능하다는 장점이 있다. 회사채 신용등급 예측문제를 활용하여 MGM-Boost의 성과를 검증한 결과 SVM 및 AdaBoost 기법과 비교하여 통계적으로 유의적인 성과개선 효과를 보여주었으며 데이터 불균형 하에서도 벤치마킹 모형과 비교하여 견고한 학습성과를 나타냈다.
최근 전 세계적인 원전 설비의 수요 증가로 원자력 전략물자 취급의 중요성이 높아지는 가운데, 국외 수출을 위한 원전 관련 물품 및 기술의 신청 또한 급증하는 추세이다. 전략물자 사전판정 업무는 통상 원자력 물자 관리에 해박한 전문가의 경험 및 지식에 근거하여 수행되어 왔지만, 급증하는 수요에 상응하는 전문 인력의 공급이 부족한 실정이다. 이러한 문제를 극복하기 위하여, 본 연구진은 전략물자 수출 통제를 위한 사례 기반 지능형 수출 통제 시스템을 설계 및 개발하였다. 이 시스템은 현장 전문가의 전담 업무이던 신규 사례에 대한 전략물자 사전판정 과정 업무의 주요 맥락을 자동화 하여 전문가 및 관계 기관이 감당해야 할 업무 부담을 줄이며, 빠르고 정확한 판정을 돕는 의사결정 지원 시스템의 역할을 맡는다. 개발된 시스템은 사례 기반 추론 (Case Based Reasoning) 방식에 기반을 두어 설계되었는데, 이는 과거 사례의 특성을 활용하여 신규 사례의 해법을 유추하는 추론 방법이다. 본 연구에서는 자연어로 작성된 전자문서 처리에 널리 사용되는 텍스트 마이닝 분석 기법을 원자력 분야에 특화된 형태로 응용하여 전략물자 수출통제 시스템을 설계하였다. 시스템 설계의 근거로 선행 연구에서 제안된 반자동식 핵심어 추출 방안의 성능을 보다 엄밀히 검증하였고, 추출된 핵심어로 신규 사례와 유사한 과거 사례를 추출하는 알고리즘을 제안하였다. 제안된 방안은 텍스트 마이닝 분야의 TF-IDF 방법 및 코사인 유사도 점수를 활용한 결과(${\alpha}$)와 원자력 분야에서 통용되는 개념적 지식을 계통으로 분류하여 도출한 결과(${\beta}$)를 조합하여 최종 결과 (${\gamma}$) 를 생성하게 된다. 세부 요소 기술의 성능 검증은 임상 데이터를 활용한 실험 및 실무 전문가의 의견수렴을 통해 이루어졌다. 개발된 시스템은 사전판정 전문 인력을 다수 양성하는 데 드는 비용을 절감하는 데 일조할 것이며, 지식서비스 산업의 의미 있는 응용 사례로서 관련 산업의 성장에 기여할 수 있을 것으로 보인다.
대학 교육에 있어서 전공과목의 선택은 학생들의 진로에 중요한 역할을 한다. 하지만, 산업의 변화에 발맞춰 대학 교육도 학과별 전공과목의 분야가 다양해지고 그 수가 많아지고 있다. 이에 학생들은 본인의 진로에 맞게 수업을 선택하여 수강하는 것에 어려움을 겪고 있다. 본 연구는 대학 전공과목 추천 모델을 제시함으로써 개인 맞춤형 교육을 실현하고 학생들의 교육만족도를 제고하고자 한다. 모델 연구에는 대학교 학부생들의 2015년~2017년 수강 이력 데이터를 활용하였으며, 메타데이터로는 학생과 수업의 전공 명을 사용했다. 수강 이력 데이터는 컨텐츠 소비 여부만을 나타낸 암시적 피드백 데이터로, 수업에 대한 선호도를 반영한 것이 아니다. 따라서 학생과 수업의 특성을 나타내는 임베딩 벡터를 도출했을 시, 표현력이 낮다. 본 연구는 이러한 문제점에 착안하여, 네트워크 분석을 통해 학생, 수업의 벡터를 생성하고 이를 모델의 입력 값으로 활용하는 Net-NeuMF 모델을 제시한다. 모델은 암시적 피드백을 가진 데이터를 이용한 대표적인 모델인 원핫 벡터를 이용하는 NeuMF의 구조를 기반으로 하였다. 모델의 입력 벡터는 네트워크 분석을 통해 학생과 수업의 특성을 나타낼 수 있도록 생성하였다. 학생을 표현하는 벡터를 생성하기 위해, 각 학생을 노드로 설정하고 엣지는 두 학생이 같은 수업을 수강한 경우 가중치를 가지고 연결되도록 설계했다. 마찬가지로 수업을 표현하는 벡터를 생성하기 위해 각 수업을 노드로 설정하고 엣지는 공통으로 수강한 학생이 있는 경우 연결시켰다. 이에 각 노드의 특성을 수치화 하는 표현 학습방법론인 Node2Vec을 이용하였다. 모델의 평가를 위해 추천 시스템에서 주로 활용하는 지표 4가지를 사용하였고, 임베딩 차원이 모델에 미치는 영향을 분석하기 위해 3가지 다른 차원에 대한 실험을 진행하였다. 그 결과 기존 NeuMF 구조에서 원-핫 벡터를 이용하였을 때보다 차원과 관계없이 평가지표에서 좋은 성능을 보였다. 이에 본 연구는 학생(사용자)와 수업(아이템)의 네트워크를 이용해 기존 원-핫 임베딩 보다 표현력을 높였다는 점, 모델을 구성하는 각 구조의 특성에 맞도록 임베딩 벡터를 활용하였다는 점, 그리고 기존의 방법론에 비해 다양한 종류의 평가지표에서 좋은 성능을 보였다는 점을 기여점으로 가지고 있다.
개인화 추천에서 많이 사용되는 협업 필터링은 고객들의 구매이력을 기반으로 유사고객을 찾아 상품을 추천할 수 있는 매우 유용한 기법으로 인식되고 있다. 그러나, 전통적인 협업 필터링 기법은 사용자 간에 직접적인 연결과 공통적인 특징을 기반으로 유사도를 계산하는 방식으로 인해 신규 고객 혹은 상품에 대해 유사도를 계산하기 힘들다는 문제가 제기되어 왔다. 이를 극복하기 위하여, 다른 기법을 함께 사용하는 하이브리드 기법이 고안되기도 하였다. 이런 노력의 하나로서, 사회연결망의 구조적 특성을 적용하여 이런 문제를 해결하려는 시도가 있었다. 이는, 직접적으로 유사성을 찾기 힘든 사용자 간에도 둘 사이에 놓인 유사한 사용자 또는 사용자들을 통해 유추해내는 방식으로 상호 간의 유사성을 계산하는 방식을 적용한 것이다. 즉, 구매 데이터를 기반으로 사용자의 네트워크를 생성하고 이 네트워크 내에서 두 사용자를 간접적으로 이어주는 네트워크의 특성을 기반으로 둘 사이의 유사도를 계산하는 것이다. 이렇게 얻은 유사도는 추천대상 고객이 상품의 추천에 대한 수락여부를 결정하는 척도로 활용될 수 있다. 서로 다른 중심성 척도는 추천성과에 미치는 영향이 서로 다를 수 있다는 점에서 중요한 의미를 갖는다 할 수 있다. 이런 유사도의 계산을 위해서 네트워크의 중심성을 활용할 수 있다. 본 연구에서는 여기서 더 나아가 이런 중심성이 추천성과에 미치는 영향이 추천 알고리즘에 따라서도 다를 수 있다는 데에서 주목하여 수행되었다. 또한, 이런 네트워크 분석을 활용한 추천기법은 신규 고객 혹은 상품뿐만 아니라 전체 고객 혹은 상품으로 그 대상을 넓히더라도 추천 성능을 높이는 데 기여할 것을 기대할 수 있을 것이다. 이런 관점에서 본 연구는 네트워크 모형에서 연결선이 생성되는 것을 이진 분류의 문제로 보고, 추천 모형에 적용할 분류 기법으로 의사결정나무, K-최근접이웃법, 로지스틱 회귀분석, 인공신경망, 서포트 벡터 머신을 선택하고, 온라인 쇼핑몰에서 4년2개월간 수집된 구매 데이터로 실험을 진행하였다. 사회연결망에서 측정된 중심성 척도를 각 분류 기법에 적용하여 생성한 모형을 비교 실험한 결과, 각 모형 별로 중심성 척도의 추천성공률이 서로 다르게 나타남을 확인할 수 있었다.
최근 알파고의 등장으로 딥러닝 기술에 대한 관심이 고조되고 있다. 딥러닝은 향후 미래의 핵심 기술이 되어 일상생활의 많은 부분을 개선할 것이라는 기대를 받고 있지만, 주요한 성과들이 이미지 인식과 자연어처리 등에 국한되어 있고 전통적인 비즈니스 애널리틱스 문제에의 활용은 미비한 실정이다. 실제로 딥러닝 기술은 Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Deep Boltzmann Machine (DBM) 등 알고리즘들의 선택, Dropout 기법의 활용여부, 활성 함수의 선정 등 다양한 네트워크 설계 이슈들을 가지고 있다. 따라서 비즈니스 문제에서의 딥러닝 알고리즘 활용은 아직 탐구가 필요한 영역으로 남아있으며, 특히 딥러닝을 현실에 적용했을 때 발생할 수 있는 여러 가지 문제들은 미지수이다. 이에 따라 본 연구에서는 다이렉트 마케팅 응답모델, 고객이탈분석, 대출 위험 분석 등의 주요한 분류 문제인 이진분류에 딥러닝을 적용할 수 있을 것인지 그 가능성을 실험을 통해 확인하였다. 실험에는 어느 포르투갈 은행의 텔레마케팅 응답여부에 대한 데이터 집합을 사용하였으며, 전통적인 인공신경망인 Multi-Layer Perceptron, 딥러닝 알고리즘인 CNN과 RNN을 변형한 Long Short-Term Memory, 딥러닝 모형에 많이 활용되는 Dropout 기법 등을 이진 분류 문제에 활용했을 때의 성능을 비교하였다. 실험을 수행한 결과 CNN 알고리즘은 비즈니스 데이터의 이진분류 문제에서도 MLP 모형에 비해 향상된 성능을 보였다. 또한 MLP와 CNN 모두 Dropout을 적용한 모형이 적용하지 않은 모형보다 더 좋은 분류 성능을 보여줌에 따라, Dropout을 적용한 CNN 알고리즘이 이진분류 문제에도 활용될 수 있는 가능성을 확인하였다.
가맹사업에 있어 배타적 영업지역보호정책의 문제는 경제학 및 경영학 분야뿐만 아니라 사회 정치적으로 매우 중요한 쟁점이다. 본 연구는 배타적 영업지역과 관련한 기존 문헌을 토대로 가맹사업에서의 효율성 관점에서 배타적 영업지역보호에 영향을 미치는 변수와 배타적 영업지역 보호가 가맹본부 및 가맹점의 성과에 미치는 영향을 분석하고 있다. 가맹점의 대부분이 중소상인들이란 점을 감안하면 유통정책적으로도 중요한 의미가 있다고 할 수 있다. 본연구는 사회적으로도 잇슈가 될 수 있는 기업의 전략을 타당성과 당위성, 그리고 논리성으로만 평가하는 것이 아니라 실제 자료를 근거로 분석하였다. 또, 정책연구들이 가지고 있는 자료와 이론의 한계를 감안한 탐색적 방법론을 활용하여 보다 실질적이고 현실적용성이 뛰어난 분석을 제안하였다. 분석 결과, 배타적 영업지역보호는 긍정적인 효과가 있기는 하지만 통계적으로 유의하지 못하였으며, 가맹점과 가맹본부간의 로얄티가 많아서 위험공유성향이 클때에는 배타적 영업지역보호를 하지 않는 것이 효과적이었고, 가맹점을 모집하기 위해 배타적 영업지역보호를 해주거나 배타적 영업지역보호를 통해서 가맹사업본부내의 효율성을 키우기 위한 경우에는 긍정적인 효과가 유의하게 나타나는 것으로 밝혀졌다. 하지만 외부경쟁으로부터 직영점을 보호하기 위하거나 시장성장을 활용하기 위한 배타적 영업지역보호는 좋은 성과를 내지 못하였다. 또한 쉽게 배타적 영업지역보호를 할 수 있기에 이런 제도를 도입하는 것도 역시 좋은 성과를 내지 못한 것으로 나타났다. 결과적으로 배타적 영업지역보호가 기업의 운영효율을 증대시키기 위하여 하는 경우는 성과가 좋으나 다른 목적을 위하여 배타적 영업지역보호를 활용하는 것은 바람직한 결과를 못내는 것으로 나타났다. 본 연구는 분석결과를 토대로 영업지역 보호를 획일적으로 활용하거나 법으로 강제하기 보다는 가맹사업본부와 가맹점의 관계 및 상황, 또 동기에 맞추어 탄력적으로 적용하는 것이 바람직하다는 제안을 하고 있으며, 이를 근거로 몇 가지 정책적 시사점을 제시하였다.
시장구조 분석에서 흔히 사용되는 상표전환 자료는 비내구재 분석에 적절한 방법이 될 수 있으나 자동차 같이 사용연한이 장시간인 내구재의 경우에는 소비자의 상표에 대한 선호도가 변할 수 있어 상표전환 자료의 사용에 문제가 있다. 따라서 경쟁을 잘 포착할 수 있는 다른 접근이 필요하다. 본 연구는 이에 대한 대안으로 상표간 경쟁 자료로써 고려상표군을 이용하여 자동차 시장의 구조를 Latent Class 군집분석을 활용한 탐색적 검증방법으로 분석하였다. 또한 소비자 행동분석에 근거하여 상표간 경쟁의 근간을 이루는 고려상표군 형성에 영향을 미치는 인자들을 밝히는데 중점을 두었다. 미국 자동차 시장을 대상으로 분석한 결과, 시장은 상표 원산지 효과에 의해 구분되었다. 즉, 미국 상표, 유럽 상표, 그리고 아시아 상표 등으로 시장이 구분되었다. 또한 각 시장구조 내 소비자들의 고려상표군 형성에 신뢰성/안전, 이미지/즐거움, 경제성 등의 편익과 성별, 소득 등 개인적 요인이 영향을 미치는 것으로 나타났다.
본 연구는 점포를 방문하는 동안 노출되는 매장의 물리적 환경 특성이 서비스 브랜드 개성과 재구매의도에 미치는 영향력을 규명하기 위해 시도되었다. 이를 위해 연구모형을 개발하여, 특정 서비스 브랜드의 이용객을 대상으로 설문조사를 실시하고 구조방정식을 이용하여 분석하였다. 연구 결과는 우선, 서비스의 물리적 환경은 주변요인, 디자인요인, 사회요인으로, 그리고 서비스브랜드 개성은 유능함, 성실함, 흥분됨, 세련됨, 강인함 차원으로 분류되었다. 둘째, 물리적 환경의 모든 차원들이 모든 서비스 브랜드 개성차원에 정(+)의 영향을 주었으며, 물리적 환경의 서비스 브랜드 개성에 대한 영향력은 각 차원별로 상이하였다. 셋째, 서비스 브랜드 개성은 모두 재구매의도에 정(+)의 영향을 주었으며, 특히 세련됨 차원에 미치는 영향이 가장 켰다. 넷째, 서비스의 물리적 환경은 재구매의도에 정(+)의 영향을 주었으며, 특히 물리적 환경 중 사회요인이 재구매의도에 가장 큰 영향을 주는 것으로 나타났다. 이와 같은 결과들은 물리적 환경 연출은 브랜드 개성 형성의 결정요인으로 서비스 브랜드 차별화의 핵심요인으로 작용하므로, 호의적인 브랜드 개성 창출을 위해서는 우선적으로 물리적 환경에 대한 효율적 관리 방안이 강구되어야 함을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.