• 제목/요약/키워드: decision algorithm

Search Result 2,390, Processing Time 0.034 seconds

2n 차 최대무게 다항식에 대응하는 90/150 RCA (90/150 RCA Corresponding to Maximum Weight Polynomial with degree 2n)

  • 최언숙;조성진
    • 한국전자통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.819-826
    • /
    • 2018
  • 일반화된 해밍무게는 선형부호의 중요한 파라미터의 하나로써 암호시스템에 적용할 때 부호의 성능을 결정한다. 그리고 격자도를 이용하여 블록부호를 연판정으로 복호할 때 구현에 필요한 상태복잡도를 평가하는 척도가 되기도 함으로써 그 중요성이 한층 부각되고 있다. 특별히 삼항다항식을 기반으로 하는 유한체 상의 비트-병렬 곱셈기에 대한 연구가 진행되어왔다. 셀룰라오토마타(Cellular Automata, 이하 CA)는 국소적 상호작용에 의해 상태가 동시에 업데이트되는 성질이 있어서 LFSR보다 랜덤성이 우수하다. 본 논문에서는 효과적인 암호시스템 설계에 있어 중요한 요소 중 하나인 의사난수열 생성기의 효과적 합성에 관하여 다룬다. 먼저 간단한 90/150 전이규칙 블록의 특성 다항식의 성질을 분석하고, 이 규칙블록을 이용하여 삼항다항식 $x^2^n+x^{2^n-1}+1$($n{\geq}2$)에 대응하는 가역 90/150 CA와 $2^n$차 최대무게다항식에 대응하는 90/150 가역 CA(RCA)의 합성알고리즘을 제안한다.

거리비례제 요금정책에 따른 K요금경로탐색 (Finding the K Least Fare Routes In the Distance-Based Fare Policy)

  • 이미영;백남철;문병섭;강원의
    • 대한교통학회지
    • /
    • 제23권1호
    • /
    • pp.103-114
    • /
    • 2005
  • 서울시 대중교통체계개편에서 요금부과방안은 기본적으로 거리비례제에 근거하고 있다. 거리비례제에서 요금은 일정거리까지의 통행에 따른 기본요금과 수단적 환승에서 발생하는 환승요금, 일정거리 이상의 통행에 따른 할증요금으로 구분하여 부과된다. 본 연구는 거리비례제에 따른 요금부과 시 순차적으로 정렬된 K개의 요금경로를 탐색하는 K요금경로탐색알고리즘을 제안한다. 이를 위해 다수의 대중교통수단이 존재하는 복합교통망에서 링크표지기법을 적용하여 네트워크확장이 요구되지 않도록 하였으며, 동일링크를 통행하는 복수의 통행순단을 각각의 개별링크로 처리되도록 구축하였다. 따라서 본 연구에서 제안하는 K요금경로탐색알고리즘은 수단과 관련된 별도의 표식이 요구되지 않으므로 단일수단 교통망에 확용되는 K경로탐색알고리즘이 직접 적용될 수 있다. 본 연구는 또한 출발지에서 수단을 탑승한 이용자에게 요금이 부과되는 과정을 복합교통망에서 나타내가 위하여 출발지를 기준으로 탐색되는 인접된 두 링크에 대해서 기본요금, 환승요금, 할증요금이 계산되어 합산되는 과정을 수식으로 표현하였다. 이 수식을 K개의 원소를 포함하는 재귀벡터형태(Recursive Vector Formula)로 전화하여 K요금경로탐색을 위한 최적식과 알고리즘을 제안하였다. 간단한 사례연구를 통하여 알고리즘 수행과정을 검증하고 향후에 연구진행방향에 대하여 서술하였다.

하수관망 내 모니터링 지점 선정 기법 (Method to Determinate Monitoring Points in Sewer Networks)

  • 이정호;전환돈;박무종
    • 한국방재학회 논문집
    • /
    • 제11권3호
    • /
    • pp.229-235
    • /
    • 2011
  • 하수관거시스템(sewer system)의 효율적인 관리를 위해서는 관거 내의 유량, 수질, 불명수 및 CSOs (Combined Sewer Overflows) 등에 대한 지속적인 모니터링이 필요하며, 따라서 하수관망에서의 모니터링은 하천 방재 측면에서 매우 중요한 요소이다. 그런데, 하나의 유역 하수관거시스템에서 모든 지점에 대한 모니터링은 예산의 제약으로 인하여 불가능하다. 따라서 모니터링 지점들은 주어진 예산 내에서 최대의 효율적인 자료의 획득이 가능한 지점들로서 선정되어야 한다. 그럼에도 불구하고 모니터링 지점의 선정에 대한 명확한 기준 및 선정된 모니터링 지점에서 획득된 자료에 대한 정량화된 평가 방법에 관한 연구는 미흡한 실정이다. 본 연구에서는 이러한 문제점을 해결하고 수질 자료의 효율적인 모니터링을 위하여 하수관거시스템 내에서 수질 측정지점의 선정에 대하여 유전자알고리즘을 이용한 최적화 방법을 제시하였다. 제시된 수질측정지점 선정 모형은 엔트로피 방법을 이용하여 지점별 획득 자료에 대하여 정량적으로 평가하며, 수질측정지점의 선정에 따른 수집 자료에 대한 총 엔트로피의 최대화를 목적함수로 한다. 여기서 수집 자료들에 대한 엔트로피 평가는 자료의 변동 특성을 반영하며, 자료의 획득 가능한 범위를 의미한다. 이때 수질의 측정은 유량의 관측과 동일한 지점에서 이루어져야 하므로, 수질측정지점 선정에 대한 제약 조건은 주어진 예산에 따른 유량계 설치 가능 개수로서 이루어졌다.

머신러닝을 활용한 자동차 시트용 폴리우레탄 발포공정의 불량 예측 모델 개발 (A Development of Defeat Prediction Model Using Machine Learning in Polyurethane Foaming Process for Automotive Seat)

  • 최낙훈;오종석;안종록;김기선
    • 한국산학기술학회논문지
    • /
    • 제22권6호
    • /
    • pp.36-42
    • /
    • 2021
  • 최근 4차 산업혁명으로 인해 제조업계에서는 제조업의 인공지능을 접목시켜 효율성을 극대화하는 스마트 팩토리 붐이 일어나고 있다. 특히 자동차 부품 제조 및 생산에 널리 적용되어 불량을 낮추는 연구들이 활발히 진행되고 있다. 이에 본 연구에서는 머신러닝을 통한 불량예측을 시트 폼 발포공정에 접목시켜 발포공정의 효율성을 극대화하는 연구를 진행하였다. 자동차 시트폼 에서 주로 사용되는 폴리우레탄 폼(polyurethane foam)은 폴리올(polyol, 이하 POL)과 이소시아네이트(isocyanate, 이하 ISO)를 혼합 및 발포하는 공정으로 제조되며, 각 원료의 혼합비율과 온도의 변화에 따라 제품의 특성이 변화한다. 이에 본 연구에서는 발포공정에서 수집되는 인자별 데이터값을 머신러닝에 적용하여 불량을 예측하고자 한다. 머신러닝에 사용되는 알고리즘으로는 의사결정트리, kNN, 앙상블 알고리즘을 사용하였으며 학습은 5,147개의 데이터를 사용하였으며, 학습된 결과를 1,000개의 검증용 데이터에 적용한 결과, 세 알고리즘 중 앙상블 알고리즘에서 최대 98.5 %의 정확도를 확인할 수 있었다. 이러한 결과를 통해 발포공정에서 실시간으로 수집되는 데이터를 통해 현재 생산되는 부품의 불량 여부를 확인할 수 있으며, 나아가 각 인자를 조절하여 불량률을 개선할 수 있음을 짐작할 수 있다고 사료된다.

시계열 분석 딥러닝 알고리즘을 적용한 낙동강 하굿둑 염분 예측 (Prediction of Salinity of Nakdong River Estuary Using Deep Learning Algorithm (LSTM) for Time Series Analysis)

  • 우정운;김연중;윤종성
    • 한국해안·해양공학회논문집
    • /
    • 제34권4호
    • /
    • pp.128-134
    • /
    • 2022
  • 낙동강 하굿둑은 올해 2022년 해수 유입기간을 매월 대조기마다로 확대, 하굿둑 상류 15 km 이내로 기수역 조성을 목표로 운영되고 있다. 목표 기수역 조성구간 및 염수피해 방지를 위한 신속한 의사결정을 위해 본 연구에서는 딥러닝 알고리즘 Long Short-Term Memory(LSTM)을 적용하여 낙동대교(하굿둑 상류 약 5 km)지점의 염분 예측을 수행하였다. 창녕·함안보 방류량 등 낙동강 하구역의 시·공간적 특성을 반영하기 위한 입력데이터를 구축하였으며, Sequence length에 따른 정도 변화를 통해 낙동강 하구역의 수리학적 특성을 고려한 최적모델을 구축하였다. 예측 정확도는 결정계수(R-squred)와 RMSE(root mean square error) 이용하여 통계분석을 실시하였으며. Sequence length가 12일 때 R-squred 0.997, RMSE 0.122로 가장 정도가 높았으며, 선행 예측시간은 12시간 간격까지 R -squred 0.93 이상으로 높은 정도를 보였다.

정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형 (Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant)

  • 김주환;이경혁;김수전;김경훈
    • 한국수자원학회논문집
    • /
    • 제55권spc1호
    • /
    • pp.1283-1293
    • /
    • 2022
  • 본 연구는 정수장의 수처리 공정에서 계측되고 있는 수량 및 수질데이터의 활용과 수처리 공정제어의 지능화를 위한 것으로 정수장에서 전염소 공정이 수반되는 처리공정에서 침전지 유출수 잔류염소농도 안정화를 위하여 이를 추정할 수 있는 모형을 구축하고자 하였다. 정수장 침전지 유출수의 잔류염소농도를 예측하기 위하여 중회귀모형과 인공지능 알고리즘 중 다층퍼셉트론 신경망, 랜덤포레스트 및 장단기기억(Long Short Term Memory; LSTM) 모형을 활용하였고 그 결과를 비교, 평가하였다. 모형의 입력변수로는 전염소 공정이 도입된 정수장에서의 잔류염소농도, 수온, 탁도, pH, 전기전도도, 유량, 알칼리도 등이 사용되었고 전염소에 따른 침전지의 안정적 운영을 위해 요구되는 침전지 잔류염소농도를 출력변수로 구성하였다. 적용 결과에서는 랜덤포레스트 모형이 가장 양호한 결과를 보여 주었으며 다음으로 LSTM, 다층퍼셈트론 신경망 순으로 나타났다. 수학적 모형인 중회귀모형은 적합도 측면에서 가장 낮은 결과를 보여 주었는데, 이는 수량과 수질데이터의 수치적인 규모나 차원의 차이뿐만 아니라 계절별 수질특성에 따라 염소소비 특성이 매우 다양하게 반응하기 때문으로 판단된다. 따라서 정수장 수처리 공정에서 인공지능 알고리즘의 적용을 위해서는 랜덤포레스트와 같이 의사결정 트리구조의 도입과 적용이 타당한 것으로 나타났다. 본 연구에서 분석된 결과를 근거로 전염소 공정이 도입된 정수장 수처리 공정에서 염소주입량을 실시간으로 예측 가능하게 함으로써 침전지 유출수에서 잔류염소농도를 일정하게 유지하는데 기여할 수 있을 것으로 기대된다.

'2019 한국형 조현병 약물치료 지침서'에 따른 조현병에서 동반증상 및 부작용의 치료 (Korean Treatment Guideline on Pharmacotherapy of Co-existing Symptoms and Antipsychotics-related Side Effects in Patients with Schizophrenia)

  • 윤제연;이정석;강시현;남범우;이승재;이승환;최준호;김찬형;정영철
    • 대한조현병학회지
    • /
    • 제22권2호
    • /
    • pp.21-33
    • /
    • 2019
  • Objectives: The current study covers a secondary revision of the guidelines for the pharmacotherapy of schizophrenia issued by the Korean Medication Algorithm for Schizophrenia (KMAP-SCZ) 2001, specifically for co-existing symptoms and antipsychotics-related side-effects in schizophrenia patients. Methods: An expert consensus regarding the strategies of pharmacotherapy for positive symptoms of schizophrenia, co-existing symptoms of schizophrenia, and side-effect of antipsychotics in patients with schizophrenia was retrieved by responses obtained using a 30-item questionnaire. Results: For the co-existing symptoms, agitation could be treated with oral or intramuscular injection of benzodiazepine or antipsychotics; depressive symptoms with atypical antipsychotics and adjunctive use of antidepressant; obsessive-compulsive symptoms with selective serotonin reuptake inhibitors and antipsychotics other than clozapine and olanzapine; negative symptoms with atypical antipsychotics or antidepressants; higher risk of suicide with clozapine; comorbid substance abuse with use of naltrexone or bupropion/varenicline, respectively. For the antipsychotics-related side effects, anticholinergics (extrapyramidal symptom), propranolol and benzodiazepine (akathisia), topiramate or metformin (weight gain), change of antipsychotics to aripiprazole (hyperprolactinemia and prolonged QTc) or clozapine (tardive dyskinesia) could be used. Conclusion: Updated pharmacotherapy strategies for co-existing symptoms and antipsychotics-related side effects in schizophrenia patients as presented in KMAP-SCZ 2019 could help effective clinical decision making of psychiatrists as a preferable option.

기계학습을 활용한 계란가격 예측 모델링 (Modeling for Egg Price Prediction by Using Machine Learning)

  • 조호현;이대겸;채영훈;장동일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.15-17
    • /
    • 2022
  • 2020년 하반기부터 2021년 초까지 발생한 조류인플루엔자의 여파로 1,780만수의 산란계가 살처분되면서 계란 공급 부족으로 계란 1판에 1만원을 넘는 사태가 벌어지기도 했다. 이에 정부는 물가 안정 대책으로 1,000억원 이상의 국고를 계란 수입에 투입하였지만, 계란 가격의 안정화는 쉽지 않았다. 계란 가격의 급격한 변동성은 소비자와 양계농가 모두에게 부정적인 영향을 미치므로 계란 가격의 안정화 방안을 위한 대책이 필요하다. 이를 위해 본 연구에서는 머신러닝 회귀분석 알고리즘을 활용하여 계란 가격을 예측하였으며, 가격 예측을 위해서 대한양계협회 2012~2021년도의 월간 산란계 생산통계와 국가통계포털(KOSIS)의 도축실적 등 총 8개의 독립변수를 선택하였다. 실제 가격과 모델에 의한 예측 가격의 차이를 나타내는 평균 제곱근 오차(RMSE)는 약 103원이며, 이는 개발된 모델이 계란 가격을 비교적 잘 예측한 결과라고 판단된다. 정확한 계란 가격 예측은 산란계 계란 생산주령의 유연한 조정과 산란계 입식에 대한 의사결정을 도울 수 있고, 계란 가격 안정성 확보에 도움을 줄 것으로 보인다.

  • PDF

오디오 부호화기를 위한 스펙트럼 변화 및 MFCC 기반 음성/음악 신호 분류 (Speech/Music Signal Classification Based on Spectrum Flux and MFCC For Audio Coder)

  • 이상길;이인성
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.239-246
    • /
    • 2023
  • 본 논문에서는 오디오 부호화기를 위한 스펙트럼 변화 파라미터와 Mel Frequency Cepstral Coefficients(MFCC) 파라미터를 이용하여 음성과 음악 신호를 분류하는 개루프 방식의 알고리즘을 제안한다. 반응성을 높이기 위해 단구간 특징 파라미터로 MFCC를 사용하고 정확도를 높이기 위해 장구간 특징 파라미터로 스펙트럼 변화를 사용하였다. 전체적인 음성/음악 신호 분류 결정은 단구간 분류와 장구간 분류를 결합하여 이루어진다. 패턴인식을 위해 Gaussian Mixed Model(GMM)을 사용하였고, Expectation Maximization(EM) 알고리즘을 사용하여 최적의 GMM 파라미터를 추출하였다. 제안된 장단구간 결합 음성/음악 신호 분류 방법은 다양한 오디오 음원에서 평균적으로 1.5% 분류 오류율을 보였고 단구간 단독 분류 방법 보다 0.9%, 장구간 단독 분류 방법보다 0.6%의 분류 오류율의 성능 개선을 이룰 수 있었다. 제안된 장단구간 결합 음성/음악 신호 분류 방법은 USAC 오디오 분류 방법보다 타악기 음악 신호에서 9.1% 분류 오류율, 음성신호에서 5.8% 분류 오류율의 성능 개선을 이룰 수 있었다.

인공지능 기반 임상의학 결정 지원 시스템 의료기기의 성능 및 안전성 검증을 위한 간 종양 표준 데이터셋 구축 (Construction of a Standard Dataset for Liver Tumors for Testing the Performance and Safety of Artificial Intelligence-Based Clinical Decision Support Systems)

  • 김승섭;이동호;이민우;김소연;신재승;최진영;최병욱
    • 대한영상의학회지
    • /
    • 제82권5호
    • /
    • pp.1196-1206
    • /
    • 2021
  • 목적 간 종양의 조영증강 컴퓨터단층촬영(이하 CT) 영상에 관한 인공지능 알고리즘의 성능과 안전성을 검증할 수 있는 표준 테스팅 데이터셋을 구축하고자 하였다. 대상과 방법 국내 4개 3차 의료기관의 복부 영상의학 전문가 4인이 모여 간 종양 진단 알고리즘의 성능과 안전성을 검증하기 위해 표준 데이터셋이 갖춰야 할 조건을 논의하였다. 각 기관마다 간세포암 75예, 전이암 75예, 그리고 양성 병변 30-50예씩 수집하여, 총 783명 환자의 CT 영상을 대상으로 하였다. 간세포암과 전이암의 경우 병리학적으로 확진된 경우만을 대상으로 하였다. 각 기관의 복부 영상의학 전문가들이 직접 환자의 임상정보를 추출하고 CT 영상에 관한 데이터 라벨링(labeling)을 수기로 시행하였다. CT 영상은 의료용 디지털 영상 및 통신(Digital Imaging and Communications in Medicine, DICOM) 파일로 저장하였다. 결과 복부 영상의학 전문가들이 수기 데이터 라벨링을 시행한 총 783 증례의 간 종양 조영증강 CT의 표준 데이터셋을 구축하였다. 알고리즘의 성능 및 안전성은 병변의 발견 여부 및 특성화의 정확도에 대해 민감도와 특이도를 계산하여 평가할 수 있다. 결론 본 연구에서 구축한 간 종양 조영증강 CT 영상의 표준 데이터셋은 임상의학 결정 지원시스템을 위한 기계학습 기반 인공지능 알고리즘을 평가하는 데에 활용될 수 있다.