• Title/Summary/Keyword: decentralized wastewater treatment system

Search Result 11, Processing Time 0.025 seconds

Application of Microbial Fuel Cells to Wastewater Treatment Systems Used in the Living Building Challenge (Living Building Challenge의 하수처리시스템에 대한 미생물 연료전지의 응용)

  • Lee, Chae-Young;Liu, Hong;Han, Sun-Kee
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-481
    • /
    • 2013
  • Objectives: This study was conducted to investigate the application of microbial fuel cells (MFCs) to the wastewater treatment systems employed in the Living Building Challenge. Methods: I reviewed a range of information on decentralized wastewater treatment technologies such as composting toilets, constructed wetlands, recirculating biofilters, membrane bioreactors, and MFCs. Results: The Living Building Challenge is a set of standards to make buildings more eco-friendly using renewable resources and self-treating water systems. Although there are various decentralized wastewater treatment technologies available, MFCs have been considered an attractive future option for a decentralized system as used in the Living Building Challenge. MFCs can directly convert substrate energy to electricity with high conversion efficiency at ambient and even at low temperatures. MFCs do not require energy input for aeration if using open-air cathodes. Moreover, MFCs have the potential for widespread application in locations lacking water and electrical infrastructure Conclusions: This paper demonstrated the feasibility of MFCs as a novel decentralized wastewater treatment system employed in the Living Building Challenge.

A Study on the Application of Pre-Chemical Treatment on the Decentralized Domestic Wastewater Reclamation System (도시의 분산형 생활오수 재생시스템에 화학적 전처리공정도입에 관한 연구)

  • Lee, Sang-Woo;Park, Young-Mi;Seo, Gyu-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.115-121
    • /
    • 2006
  • The purpose of this study was to investigate applicability of pretreatment on the existing biological treatment for domestic wastewater reclamation. From Jar Tests, it was found that optimum dosage of coagulant was PAC 0.5mg/L and $FeCl_3$ 180mg/L for urban sewage. In this study, PAC 0.5mg/L was selected considering sludge production and the amount of coagulant required. In a continuous experiment performed with combining chemical coagulation and biological treatment, a considerable removal efficency was obtained in term of BOD, SS, T-N, T-P and ABS. When the raw sewage was supplied into the pre-chamical treatment facility, the removal of BOD and SS was 48.3% and 81.1%. However T-N removal was very low which means T-N consists of $NH_3-N$ mostly. T-P was almost completely recluced by the chemical addition. The effluent BOD & SS was 57~76 and 21~43mg/L, which could reduce the size of biological treatment facility. From the cost estimation pre-chemical treatment could save around half of the area required for biological treatment with post ceagulation.

Determination of the Optimal Location for Water Treatment Plants in the Decentralized Water Supply System (분산형 용수공급시스템 구축을 위한 정수처리시설 최적 위치 결정)

  • Chang, Dong-Eil;Ha, Keum-Ryul;Jun, Hwan-Don;Kim, Jeong-Hyun;Kang, Ki-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Major issues in water supply service have changed from expansion of service area to improvement of service quality, i.e., water quality and safety, and early response to emergency situation. This change in the service concept triggers the perceptions of limitation with the current centralized water supply system and of necessities of decentralized (distributed) water supply system (DWSS), which can make up the limitations. DWSS can reduce the possibility of water supply outage by establishing multiple barriers such as emergency water supply system, and secure better water quality by locating treatment facilities neighboring consumers. On the other hand, fluctuation of water demand will be increased due to the reduced supply area, which makes difficult to promptly respond the fluctuating demand. In order to supplement this, hybrid water supply system was proposed, which combined DWSS with conventional water supply system using distributing reservoir to secure the stability of water supply. The Optimal connection point of DWSS to existing water supply network in urban area was determined by simulating a supply network using EPANET. Optimal location of decentralized water treatment plant (or connection point) is a nodal point where changes in pressure at other nodal points can be minimized. At the same time, the optimal point should be selected to minimize hydraulic retention time in supply network (water age) to secure proper water quality. In order to locate the point where these two criteria are satisfied optimally, Distance measure method, one of multi-criteria decision making was employed to integrate the two results having different dimensions. This methodology can be used as an efficient decision-support criterion for the location of treatment plant in decentralized water supply system.

Development of Natural and Ecological Wastewater Treatment System for Decentralized Regions and Rural Communities (분산지역 및 농촌마을 하수처리를 위한 자연정화 고도처리 공법 개발)

  • Kim, Song-Bae;Kwon, Tae-Young;Han, Jung-Yoon;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.489-497
    • /
    • 2006
  • The feasibility of the Natural and Ecological Wastewater treatment System (NEWS) was examined for rural wastewater treatment in Korea. The intermittent trickling biofilter with high hydrophilic filter media was used for pretreatment for suspended solids and organic pollutants. The subsequent constructed wetland with porous granule materials was used for promoting nutrient removal. The results show that the removal efficiencies of the system were high with respect to the water quality parameters except COD. Even if the effluent from the biofilter did not meet the guidelines for wastewater treatment plant effluent in Korea in terms of $BOD_5$ and TN, the final effluent of the system meets the guidelines us to good performance of the constructed wetland. The regression analysis between pollutant loading rate and removal rate indicated that the system could have stable removal for SS, $BOD_5$, TN, and TP in the given influent ranges. The analysis in the winter period indicated that the wetland covered with transparent polycarbonate glass had the statble performance during the winter period dus to increase of temperature inside the wetland without any heating system. With the stable performance, effective poilutant removal, low maintenance, and cost-effectiveness, the NEWS could be considered as an alternative treatment system for decentralized regions and rural communities in Korea.

Anaerobic Hydrogen Fermentation and Membrane Bioreactor (MBR) for Decentralized Sanitation and Reuse-Organic Removal and Resource Recovery

  • Paudel, Sachin;Seong, Chung Yeol;Park, Da Rang;Seo, Gyu Tae
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.387-393
    • /
    • 2014
  • The purpose of this study is to evaluate integrated anaerobic hydrogen fermentation and membrane bioreactor (MBR) for on-site domestic wastewater treatment and resource recovery. A synthetic wastewater (COD 17,000 mg/L) was used as artificial brown water which will be discharged from urine diversion toilet and fed into a continuous stirred tank reactor (CSTR) type anaerobic reactor with inclined plate. The effluent of anaerobic reactor mixed with real household grey water (COD 700 mg/L) was further treated by MBR for reuse. An optimum condition maintained in anaerobic reactor was HRT of 8 hrs, pH 5.5, SRT of 5 days and temperature of $37^{\circ}C$. COD removal of 98% was achieved from the overall system. Total gas production rate and hydrogen content was 4.6 L/day and 52.4% respectively. COD mass balance described the COD distribution in the system via reactor byproducts and effluent COD concentration. The results of this study asserts that, anaerobic hydrogen fermentation combined with MBR is a potent system in stabilizing waste strength and clean hydrogen recovery which could be implemented for onsite domestic wastewater treatment and reuse.

An experimental study on decision making for multi-source water (다중수원 수처리 의사결정에 관한 실험적 연구)

  • Jung, Jungwoo;Cho, Hyeong-Rak;Lee, Sangho;Chae, Soo-Kwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A combined treatment system using multiple source water is becoming important as an alternative to conventional water supply for small-scale water systems. In this research, combined water treatment systems were investigated for simultaneous use of multi-source water including rainwater, ground water, river water, and reclaimed wastewater. A laboratory-scale system was developed to systematically compare various combinations of water treatment processes, including sand filtration, microfiltration (MF), granular activated carbon (GAC), and nanofiltration (NF). Results showed that the efficiency of combined water treatment systems was affected by the quality of feed waters. In addition, a simply approach based on the concept of linear combination was suggested to support a decision-making for the optimum water treatment systems with the consideration of final water quality.

Development of high-hydrophilic Biofilter for Decentralized Regions and Rural Communities (분산지역의 생활하수 처리를 위한 고친수성 Biofilter 개발)

  • Kwon, Tae-Young;Yoon, Chun-Gyeong;Jung, Kwang-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.678-686
    • /
    • 2006
  • The feasibility of the high-hydrophilic biofilter was examined for application in rural wastewater treatment in Korea. The intermittent trickling biofiter was developed for wastewater treatment of media and examined instantaneous wetting water and immersional wetting water. Melamin foam absorbed 120 times it's weight in water and maintained wetting status than other materials. These characteristics are improvement for application in rural areas showing large variance of amount of influent. The biofilter process was effective in treating organic pollutants; mean removal efficiencies of $BOD_5$ and TSS were above 80%. The average SS concentrations of effluent was showed below $10mg/L^{-1}$ and meet guidelines in special regions, however, the average concentration of $BOD_5$ was about $20mg/L^{-1}$. The removals of T-N and T-P were relatively less effective and removal efficiencies were below 40%. It might meet the guidelines for T-P because of low levels of influent T-P concentration. However, the T-N concentration were too high and further treatment is required. The effluent concentration of $NH_4-N$ showed a significant reduction rate about 43.8%, but part of $NH_4-N$ was transformed to $NO_2-N$ and $NO_3-N$ inside the biofilter through nitrification process. The effluent concentration of org-P was removed about 78.8% of influent concentration by filtration. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the hydrophilic biofilter system was thought to be an effective and feasible alternative for decentralized rural areas.

Technical Advancements Needed for the Introduction of Distributed Water Infrastructure to Urban Wastewater Management Systems (분산형 물 인프라의 도시 하수관리 시스템 도입을 위한 기술적 발전방안)

  • Yongju Choi;Wooram Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.76-86
    • /
    • 2023
  • We are on the verge of paradigm shift for the design and operation of our urban water systems from treatment- and efficiency-based to recirculation- and sustainability-based. One of the most frequently suggested alternatives to embody this paradigm shift is to decentralize the currently highly centralized urban water infrastructure. However, claims for water infrastructure decentralization are often criticized due to poor economic feasibility, unstable performance, and unprofessional operation and maintenance. The current study critically reviews the literature to discuss the technical advancement needs to overcome such challenges. Firstly, decentralized water infrastructure was briefly defined and the rationale for the proposal of its introduction to the next-generation urban water systems was laid down. The main discussion focused on the following water technologies, which require special attention when working with decentralized water infrastructure: i) material collection, storage, and transport; ii) easily scalable water treatment; iii) sensor, information, and communications; and iv) system optimization. The principles, current development status, and challenges were discussed for each of the water technologies. The discussion on the water technologies has enabled the identification of future research needs for their application to the next-generation urban water systems which will be designed following decentralized water infrastructure. This paper will significantly improve the current understanding on water infrastructure decentralization and provides insight on future direction of water technology development.

Development of Up- and Down-flow Constructed Wetland for Advanced Wastewater Treatment in Rural Communities (소규모 오수발생지역의 고도처리시설을 위한 상.하 흐름형 인공습지 개발)

  • Kim, Hyung-Joong;Yoon, Chun-G.;Kwun, Tae-Young;Jung, Kwang-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.113-124
    • /
    • 2006
  • The feasibility of the up- and down-flow constructed wetland was examined fur rural wastewater treatment in Korea. Many constructed wetland process was suffered from substrate clogging and high plant stresses because of long term operation. The up- and down-flow constructed wetland process used porous granule materials (charcoal pumice : SSR=10:20:70) for promoting intake rate of nutrient to plant, and especially flow type was designed continuously repeating from up-flow to down-flow. $BOD_5$ and SS was removed effectively by the process with the average removal rate being about 75% respectively. The wetland process was effective in treating nutrient as well as organic pollutant. Removal of TN and TP were more effective than other wetland system and mean effluent concentrations were approximately 7.5 and $0.4mg\;L^{-1}$ which satisfied the water quality standard for WWTPs. The treatment system did not experience any clogging or accumulations of pollutants and reduction of treatment efficiency during winter period because constructed polycarbonate glass structure prevented temperature drop. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the up- and down-flow constructed wetland was thought to be an effective and feasible alternative in rural area.