• 제목/요약/키워드: decadal change

검색결과 41건 처리시간 0.028초

2000년대 초반 우리나라 장마기간 강수량의 십년 변화 특성 (Decadal Change in Rainfall During the Changma Period in Early-2000s)

  • 우성호;임소영;권민호;김동준
    • 대기
    • /
    • 제27권3호
    • /
    • pp.345-358
    • /
    • 2017
  • The decadal change in rainfall for Changma period over the South Korea in early-2000s is detected in this study. The Changma rainfall in P1 (1992~2002) decade is remarkably less than in P2 (2003~2013) decade. The much rainfall in P2 decade is associated with the increase of rainy day frequency during Changma period, including the frequent occurrences of rainy day with a intensity of 30 mm/day or more in P2 decade. This decadal change in the Changma rainfall is due to the decadal change of atmospheric circulation around the Korean Peninsula which affects the intensity and location of Changma rainfall. During P2 decade, the anomalous anti-cyclone over the south of the Korean Peninsula, which represents the expansion of the North Pacific high with warm and wet air mass toward East Asia, is stronger than in P1 decade. In addition, the upper level zonal wind and meridional gradient of low-level equivalent potential temperature in P2 decade is relatively strengthened over the northern part of the Korean Peninsula than in P1 decade, which corresponds with the intensification of meridional gradient between air mass related to the East Asian summer monsoon nearby the Korean Peninsula in P2 decade. The enhanced meridional gradient of atir mass during P2 decade is favorable condition for the intensification of Changma rainfall band and more Changma rainfall. The atmospheric conditions related to enhanced Changma rainfall during P2 decade is likely to be influenced by the teleconnection linked to the suppressed convection anomaly over the southern part of China and South China Sea in P2 decade.

Benthic Organisms and Environmental Variability in Antarctica: Responses to Seasonal, Decadal and Long-term Change

  • Clarke, Andrew
    • Ocean and Polar Research
    • /
    • 제23권4호
    • /
    • pp.433-440
    • /
    • 2001
  • Marine organisms in Antarctica live in an environment which exhibits variability in physical processes over a wide range of temporal scales, from seconds to millennia. This time scale tends to be correlated with the spatial scale over which a given process operates, though this relationship is influenced by biology. The way organisms respond to variability in the physical environment depends on the time-scale of that variability in relation to life-span. Short-term variations are perceived largely as noise and probably have little direct impact on ecology. Of much greater importance to organisms in Antarctica are seasonal and decadal variations. Although seasonality has long been recognised as a key feature of polar environments, the realization that decadal scale variability is important is relatively recent. Long-term change has always been a feature of polar environments and may be a key factor in the evolution of the communities we see today.

  • PDF

북극진동과 한반도 지표기온 관계의 장기변동성 (Decadal Changes in the Relationship between Arctic Oscillation and Surface Air Temperature over Korea)

  • 전예준;송강현;손석우
    • 대기
    • /
    • 제31권1호
    • /
    • pp.61-71
    • /
    • 2021
  • The relationship between the Arctic Oscillation (AO) and surface air temperature (SAT) over Korea is re-examined using the long-term observation and reanalysis datasets for the period of December 1958 to February 2020. Over the entire period, Korean SAT is positively correlated with the AO index with a statistically significant correlation coefficient, greater than 0.4, only in the boreal winter. It is found that this correlation is not static but changes on the decadal time scale. While the 15-year moving correlations are as high as 0.6 in 1980s and 1990s, they are smaller than 0.3 in the other decades. It is revealed that this decadal variation is partly due to the AO structure change over the North Pacific. In the period of 1980s-1990s, the AO-related sea level pressure fluctuation is strong and well defined over the western North Pacific and the related temperature advection effectively changes the winter SAT over Korea. In the other periods, the AO-related circulation anomaly is either weak or mostly confined within the central North Pacific. This result suggests that Korean SAT-AO index relationship, which becomes insignificant in recent decades is highly dependent on mean flow change in the North Pacific.

지난 130년 간 한반도 근해의 표층 수온 변화 경향 (Trends in Sea Surface Temperature (SST) Change Near the Korean Peninsula for the Past 130 Years)

  • 김성중;우성호;김백민;허순도
    • Ocean and Polar Research
    • /
    • 제33권3호
    • /
    • pp.281-290
    • /
    • 2011
  • This study examined the change in sea surface temperature (SST) around the Korean peninsula since industrialization at year 1880, and its possible causes using observation based data from the Hadley Center, the Goddard Institute of Space Studies, and National Climate Data Center. Since year 1880, There have been multi-decadal fluctuations with a gradual reduction from 1880 to around 1940, and from 1950-1980. There has then been a marked increase from 1940-1950, and from 1980 to the present. The ocean surface warming is larger during the boreal winter than summer, and greater in the south. The multi-decadal SST fluctuations around the Korean Peninsula are largely consistent with the negative phase of the Pacific Decadal Oscillation (PDO), which fluctuates with periods of about 20-50 years. Secondly, the El Ni$\tilde{n}$o-Southern Oscillation (ENSO), whose long period component moves along with the PDO, appears to influence the SST near the Korean Peninsula, especially in recent decades. Overall, the SST around the Korean Peninsula has warmed since year 1880 by about $1^{\circ}C$, which is about twice the global-mean ocean surface warming. This long-term warming is aligned with an increase in greenhouse gas concentration, as well as local factors such as the PDO.

ENSO 십년 변동에 미치는 북서태평양 지역에서의 바람 응력 변동의 역할 (Roles of Wind Stress Variations in the Western North Pacific on the Decadal Change of ENSO)

  • 이윤경;문병권;권민호;전종갑
    • 한국지구과학회지
    • /
    • 제27권6호
    • /
    • pp.687-694
    • /
    • 2006
  • 북서태평양의 바람 변동이 1970년대 이후에 나타난 ENSO의 십년 주기 변화에 미치는 영향을 조사하였다. SODA 자료를 이용한 SVD 분석을 통하여 ENSO 절정기에 북서태평양에서 나타나는 양의 바람 응력 컬이 적도 지역에서의 열함유량을 방출/재충전(discharge/recharge)시켜 ENSO의 위상을 변화시킨다는 것을 보였다. ENSO와 연관된 북서태평양의 바람 응력 컬은 1970년대 이전에 강하게 나타났다. 이러한 강한 바람 응력 강제력은 적도의 열함유량을 빠르게 방출시켰고, 결과로서 1960-1970년대 기간 동안에 ENSO의 주기가 짧고 강도가 악하게 나타났다 반면에 1970년대 후반 이후에는 북서태평양 바람 응력의 컬이 약해지면서 ENSO의 주기가 길어지고 강도가 강해졌다. 간단한 대기-해양 접합 모델 실험으로 관측 자료 분석 결과와 유사하게 북서태평양 지역에서 바람 응력 컬이 더 많이 해양에 작용할 때 ENSO의 진폭과 주기가 감소하는 것을 보였다. 이 결과들은 1970년대 후반 이후에 나타난 ENSO특징의 변화가 북서태평양 지역에서의 바람 응력의 변화와 관련이 있다는 것을 제시한다.

HadGEM2-AO 모델이 모의한 AMOC 수십 년 변동 메커니즘 (A Mechanism of AMOC Decadal Variability in the HadGEM2-AO)

  • 위지은;김기영;이조한;부경온;조천호;김철희;문병권
    • 한국지구과학회지
    • /
    • 제36권3호
    • /
    • pp.199-209
    • /
    • 2015
  • 북대서양 자오면 순환(AMOC)은 그린란드 부근에서 고밀도 해수의 침강으로 유도되는데, 이것은 열과 물질을 수송시키기 때문에 기후 시스템의 중요한 요소이다. 이 연구는 전 지구 기후모델 중 하나인 HadGEM2-AO 모델에서 모의된 AMOC의 특징과 장기변동 메커니즘을 분석하였다. AMOC 지수를 이용한 지연 상관 분석을 통해 AMOC의 수십 년 변화는 해양 자체유지 변동으로 간주할 수 있었다. 즉 AMOC의 장기 변화는 남북 수온 경도와 해양 순환의 위상차로 인해 발생하는 불안정성에 의한 것으로 분석되었다. AMOC가 강해지면서 열의 북향 수송에 의해 남북 수온 경도가 작아지고, 따라서 해수의 순환과 열 수송이 줄어드는데, 이와 함께 고위도에서는 냉각이 유도되어 결과적으로 다시 AMOC가 강해지게 된다. 이 메커니즘은 저위도로부터 이류되는 열의 양에 따라 고위도 지역의 밀도 변화가 결정되기 때문에 AMOC의 변동을 염분 유도가 아닌 열적 유도 과정으로 이해할 수 있다.

Change of Tree Types and Estimation of Tree Ages in a Research Forest from Two-decade Archive of Landsat Images

  • Jeon, Kyeong-Mi;Lee, Hoon-Yol
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.407-410
    • /
    • 2005
  • We used a series of Landsat images acquired from 1984 to 2001 to observe decadal changes of the research forest of Kangwon National University. Tree NDVI images of November in 1984, 1986 and 2001 were displayed in RGB color composite. This image enabled us to identify historical change of conifer types and their approximate ages. Conifers were classified into 'old conifer aged more than 25 years', 'young conifer aged 20-25 years' 'very young conifer aged less than 20 years', and recently deforested areas. The results coincide with in situ data very well. Archives of higher resolution images should be used to monitor the change of area for various tree types.

  • PDF

Relationship between Interannual Variability of Phytoplankton and Tropical Cyclones in the Western North Pacific

  • Park, Jong-Yeon;Kug, Jong-Seong;Park, Ji-Soo;Chang, Chan-Joo
    • Ocean and Polar Research
    • /
    • 제34권1호
    • /
    • pp.29-35
    • /
    • 2012
  • We investigated the interannual relationship between chlorophyll concentrations in the western North Pacific and tropical cyclones (TCs) in the western North Pacific by analyzing data collected for >12 years. Despite the short-term scale (2~3 weeks) in the contribution of tropical cyclones to phytoplankton, the current study revealed that the long-term chlorophyll variability in the western North Pacific is profoundly related to long-term variability in the frequency of TCs. It was also found that the Pacific decadal oscillation (PDO) tends to control such relationships between the 2 bio-physical systems. This result suggests a significant climatic relationship between TC activity and marine phytoplankton, and also suggests the possibility of more accurate estimations of primary production in the western North Pacific.

A Change of Large-scale Circulations in the Indian Ocean and Asia Since 1976/77 and Its Impact on the Rising Surface Temperature in Siberia

  • Lim, Han-Cheol;Jhun, Jong-Ghap;Kwon, Won-Tae;Moon, Byung-Kwon
    • 한국지구과학회지
    • /
    • 제30권5호
    • /
    • pp.660-670
    • /
    • 2009
  • This study examines the changes of an interdecadal circulation over the Asian continent to find cause of the surface warming in Siberia from 1958 to 2004. According to our study, there is a coherency between a long-term change of sea surface temperature in the Indian Ocean and the rapid increase of air temperature in Siberia since 1976/1977. In this study, we suggest that mean wind field changes induced by the positive sea surface temperature anomalies of the Indian Ocean since 1976/1977 are caused of inter-decadal variations in a large-scale circulation over the Asian continent. It also indicates that the inter-decadal circulation over the Asian continent is accompanied with warm southerly winds near surface, which have significantly contributed to the increase of surface temperature in Siberia. These southerly winds have been one of the most dominant interdecadal variations over the Asian continent since 1976/1977. In addition, we investigated the long-term trend mode of 850 hPa geopotential height data over the Asian continent from the Empirical Orthogonal Function (EOF) analysis for 1958-2004. In result, we found that there was an anomalously high pressure pattern over the Asian continent, it is called 'the Asian High mode'. It is thus suggested that the Asian High mode is another response of interdecadal changes of large-scale circulations over the Asian continent.