• Title/Summary/Keyword: debugging

Search Result 341, Processing Time 0.029 seconds

Development of Debugging Tasks and Tool for Process-centered Assessment on Software Education (소프트웨어 교육에서 과정중심 평가를 위한 디버깅 과제 및 도구 개발)

  • Lyu, Kigon;Kim, Soohwan
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.4
    • /
    • pp.61-68
    • /
    • 2020
  • The purpose of this study is to develop a debugging task to support process-centered assessment on software(SW) education and to develop a service site. Achievement criteria for programming in elementary and middle school SW curriculum consists of control structures such as repetition and condition, and elements such as variables and input/output. In order to apply the process-centered assessment presented by the Ministry of Education, it is necessary to present tasks that can be used in the actual classroom environment and to consider connection with achievement levels. Therefore, in this study, 12 tasks for elementary school and 15 tasks for middle school were developed as debugging tasks and their validity was verified. As a result of conducting Delphi verification for validity, it was found that the level and content of the debugging task are appropriate. In addition, as a result of verifying the usability of the debugging challenge site by applying a heuristic evaluation method, it was found that it is suitable for use in the real educational field.

A Study on the Imperfect Debugging Effect on Release Time of Dedicated Develping Software (불완전디버깅이 주문형 개발소프트웨어의 인도시기에 미치는 영향 연구)

  • Che Gyu Shik
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.4
    • /
    • pp.87-94
    • /
    • 2004
  • The software reliability growth model(SRGM) has been developed in order to estimate such reliability measures as remaining fault number, failure rate and reliability for the developing stage software. Almost of them assumed that the faults detected during testing were evetually removed. Namely, they have studied SRGM based on the assumption that the faults detected during testing were perfectly removed. The fault removing efficiency. however. IS imperfect and it is widely known as so in general. It is very difficult to remove detected fault perfectly because the fault detecting is not easy and new error may be introduced during debugging and correcting. Therefore, the fault detecting efficiency may influence the SRGM or cost of developing software. It is a very useful measure for the developing software. much helpful for the developer to evaluate the debugging efficiency, and, moreover, help to additional workloads necessary. Therefore. it is very important to evaluate the effect of imperfect dubugging in point of SRGM and cost. and may influence the optimal release time and operational budget. I extent and study the generally used reliability and cost models to the imperfect debugging range in this paper.

  • PDF

Software Reliability Growth Models considering an Imperfect Debugging environments (불완전 디버깅 환경을 고려한 소프트웨어 신뢰도 성장모델)

  • 이재기;이규욱;김창봉;남상식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.589-599
    • /
    • 2004
  • Most models assume the complete debugging environments by requiring a complete software correction in quantitative evaluation of software reliability. But, in many case, new faults are involved in debugging works, for complete software correction is impossible. In this paper, software growth model is proposed about incomplete debugging environments by considering the possibility of new faults involvements, and software faults occurrence status are also mentioned about NHPP by considering software faults under software operation environments and native faults owing to the randomly involved faults in operation before test. While, effective quantitative measurements are derived in software reliability evaluation, applied results are suggested by using actual data, and fitnesswith existing models are also compared and analyzed.

Software Reliability Growth Model with the Testing Effort for Large System (대형 시스템 개발을 위한 시험능력을 고려한 소프트웨어 신뢰도 성장 모델)

  • Lee Jae-ki;Lee Jae-jeong;Nam Sang-sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.987-994
    • /
    • 2005
  • Most of the proposed SRGMs are required to perfect debugging based on removal of defect as soon as the detection of defects in system tests. But the detected defects are corrected after few days as a fixed time or induced new fault in software under the imperfect debugging environments. Solving these problems, we discussed that the formal software reliability model considered testing-effort for the fault detection and correction of software defects, and then using this model we have estimated of the software reliability closed to practical conditions.

A Study on the Optimum Release Time Determination of Developing Software Considering Imperfect Debugging (불완전 디버깅을 고려한 개발 소프트웨어의 최적 인도 시기 결정 방법에 관한 연구)

  • Che Gyu Shik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.396-402
    • /
    • 2005
  • The software reliability growth model(SRGM) has been developed in order to evaluate such measures as remaining fault number, fault rate, and reliability for the developing stage software. Most of the study literatures assumed that this detecting efficiency was perfect. However the actual fault detecting is generally imperfect, and widely known to many persons. It is not easy to develop and remove the fault existing in the software because the fault finding is difficult, and the exact solving method also not easy, and new fault may be introduced depending on the tester's capability. There, the fault removing efficiency influences the software reliability growth or developing cost of software. It is a very useful measure throughout the developing stage, much helpful for the developer to evaluate the debugging efficiency, and evaluate additional workload. Hence, the study for the imperfect debugging is important in point of software reliability and cost. This paper proposes that the fault debugging is imperfect and new fault may be introduced for the developing software during the developing stage.

Evaluation of Software Task Processing Based on Markovian Imperfect Debugging Model and Its Release Policy (마코프 불완전 수리모형에 따른 소프트웨어 업무처리 능력평가 및 출하정책에 관한 연구)

  • Kim, U-Jung;Lee, Chong-Hyung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.891-898
    • /
    • 2010
  • In real software development fields, software is unified by several modules that are developed before the software testing period. For the evaluation of software task processing performance, this paper considers the software imperfect debugging model that is proposed by Lee and Park (2003) and presents the measures of a unified software, such as the completion probability of a task which is completed in a time interval and the expected number of the completed tasks. In addition, we suggest a software release policy that satisfies the required level of the expected perfect debugging, completion probability, and availability.

Design and Implementation of Distributed Debugger Supporting Heterogeneous Environment (이기종환경을 지원하는 분산디버거의 설계 및 구현)

  • 서영애
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.523-526
    • /
    • 1998
  • In an ongoing project at ETRI-CSTL, A debugger for distributed programs that run on a varied collection of machines is being built. To build such debugger, a clientserver model is incorporated. This strategy enables us to provide a unified user interface and isolate debugger core from the user interface. Several debugging servers running on a diverse set of platforms permit the implementation of a distributed debugger for heterogeneous environment, and the single debugging client provides unified debugging concept and graphical user interface over various servers. Also, the precise specification of the interaction protocol between the client and server facilitates client to be paired with a variety of server implementantations. This paper describes the design and implementation of our debugger, concentrating on the system architecture.

  • PDF

The Desing and Implementation for 1553B using Aircraft and Satellite (항공과 위성에 이용하는 1553B 통신설계 및 Debugging에 관한 연구)

  • Lee, Hyun-Seock;Lim, Ki-Tak;Jang, Jong-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1065-1066
    • /
    • 2008
  • We discuss about Design and Debugging for 1553B Communication. 1553B Communication is used in Aircraft and Satellite System. When we design a Satellite Control Computer, we apply a 1553B Communication among Satellite Control Computer and others. Satellite Control Computer has a PM32 Module, it is CPU and control module especially. In this paper, we show you a 1553B Communication Design and Debugging in the Satellite System.

  • PDF

Estimation of Software Reliability with Multiple Errors (다중오류들을 갖는 소프트웨어 신뢰성의 추정)

  • Lee, In-Suk;Jung, Won-Tae;Jeong, Hye-Jeong
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.3
    • /
    • pp.57-68
    • /
    • 1995
  • In this paper, we consider possibility that the multiple errors occur in each testing stage. At present, software reliability modeling is considered as a part of software reliability quality assurance in software engineering. However they dealt with the software growth model for the single error debugging at each testing stage until now. Hence it is necessary to study software reliability with multiple errors debugging. Therefore we propose software reliability growth modeling and estimate the parameters in the proposed software reliability growth model for the multiple errors debugging at each testing stage.

  • PDF

Performance Evaluation of Software Task Processing Based on Markovian Perfect Debugging Model

  • Lee, Chong-Hyung;Jang, Kyu-Beam;Park, Dong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.997-1006
    • /
    • 2008
  • This paper proposes a new model by combining an infinite-server queueing model for multi-task processing software system with a perfect debugging model based on Markov process with two types of faults suggested by Lee et al. (2001). We apply this model for module and integration testing in the testing process. Also, we compute several measure, such as the expected number of tasks whose processes can be completed and the task completion probability are investigated under the proposed model.