• Title/Summary/Keyword: debris-free process

Search Result 11, Processing Time 0.015 seconds

Mineralogical Characteristics and Origins of Smectite in the Marine Sediment around South Shetland Islands, Antarctica (남극 사우스셰틀란드 해양퇴적물내 스멕타이트의 광물학적 특성과 기원)

  • 정기영;윤호일
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2002
  • Mineral composition and chemistry of the clay minerals in the three cores from the continental shelves of South Shetland Islands (NCS09) and Anberse Island (GC98-2), and from the fjord of King George Island (A10-01) were determined by X-ray diffraction and electron microprobe analysis in search of the distributions and origin of the clay minerals in the Antarctic marine sediments. Smectite content is relatively high in NCS09 regardless of core depths (av. 8.3%), but low in GC98-2 (1.1%). In Al0-01, smectite content is higher in the upper section than in the lower section. Kaolinite was not detected from all the cores in this study Yellow to yellowish green clay granules were commonly scattered in the sediments of NCS09 cores. The clays contain 16.97% and 2.53% $Fe_2$$O_3$$K_2$O. Average structural formula of the clay indicates ferrian beidellite . The (Fe, K)-rich smectite of NSC09 must have been derived from relatively young basaltic volcanics altered by reaction with seawater near Shetland Islands by glacial erosion or eolian process related to volcanic eruption. GC98-2 nearer to Antarctic continent is very low in smectite content. In A10-01, the lower diamicton was deposited from the glacial erosion of smectite-free ancient volcanics in the interior of King George Island, while the upper section was derived from the smectite-bearing terrestrial debris and eolian materials after retreat of glaciers in Marian Cove and ice cover in Barton Peninsula. Thehigh K contents of smectites suggest the interstratification of illite and smectite layers, which might be observed by future TEM lattice fringe imaging.