• Title/Summary/Keyword: debris flow landslide

Search Result 122, Processing Time 0.027 seconds

Landslide Hazard Evaluation using Geospatial Information based on UAV and Infinite Slope Stability Model (UAV 기반의 공간정보와 무한사면해석모형을 활용한 산사태 위험도 평가)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.161-173
    • /
    • 2015
  • The influence of climate change on rainfall patterns has triggered landslide and debris flow with casualties and property damage. This study constructed DSM and Orthophoto by using UAV surveying technique and evaluated landslide risk area by applying GIS data into the infinite slope stability model. As a result of the estimation of slope stability in a site, the slope instability has $SI{\leq}1.0$ with cover area 46,396m2, and the distribution percentage was 18.2%. The most dangerous section has $SI{\leq}0.0$ with its cover area 7,988m2, and the ratio was 0.8%. The reviews regarding the risk of landslide and debris flow risk by stability index and river channel analysis respectively help being able to designate the hazard zone due to heavy rainfall. Therefore the analysis result of this study will need to reinforce soil slope and plan their safety measures in the future.

Study on the Development of Ubiquitous-Based Landslide with a Debris Flow Monitoring System (유비퀴터스 기반 토석류 산사태 모니터링 시스템 개발에 관한 연구)

  • Kim, Yong-Gyun;An, Dae-Young;Kang, Dea-Woo;Han, Byung-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.511-522
    • /
    • 2008
  • Domestic slope related measuring system are mainly depending on manual and visual measurements and technical development for natural slopes is poor since the technology is developed focusing on artificial cut slopes. In addition, landslide with a debris flow is occurring frequently due to recent climate abnormally and heavy rains but early forecasts and prevention of disasters are in poor condition. Therefore, construction of ubiquitous sensor network (USN) capable of detecting dangers of landslide for rapid countermeasures is necessary. In this study, new measurements devices and measurement management techniques in compliance with domestic conditions are prepared by establishing ubiquitous based landslide monitoring system and standards of measurement management.

Analysis of Characteristics of some of Forest Environmental Factors on Debris Flow Occurrence - With a Pusan and Ulsan Metropolitan Areas - (토석류 유출에 기인하는 몇 가지 산림환경인자 분석 - 부산 및 울산광역시를 중심으로 -)

  • Lee, Hae-dong;Park, Jae-hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.213-220
    • /
    • 2015
  • This study was carried out to determine the distribution of factors as effected by debris flow in Ulsan and Pusan metropolitan areas because mainly debris flow caused by typhoons and local heavy rainfall events is mainly attributed to damage of human being ad property. The high risk degree of debris flow was to affected by east (20%), northeast (20%) and northwest (20%) slopes with stand age class with elevation (69%) of 100-200 (33%). Also, the risk was high in high erosion collapse degree with slope degree of $20-25^{\circ}$ with over 300 mm (100%) of maximum daily rainfall events and 50-100 mm (50%) or >100 mm (50%) of maximum hourly rainfall events with <5 km of stream path and <50 ha of catchment area. Landslide debris and wood residue flow was also related to igneous rocks (73%) and bank collapse types of debrs flow (57%).

Investigation of the 2013 Hadari Debris Flow in Korea Through Field Survey and Numerical Analysis

  • Choi, Junghae
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.341-348
    • /
    • 2018
  • Landslides can be caused by localized intense rainfall. The loss of human lives and damage to property from landslides is increasing. However, little information exists on the movement and flow of sediment material at the time of rapid landslides. In this study, a field survey was conducted of landslides that occurred in 2013 in the Hadari area of Yeoju city in Korea. This was followed by numerical analysis. The purpose is to analyze the characteristics of a consequent debris flow and its movement at the time of failure. The results of the field survey and numerical analysis are consistent with each other. The maximum velocity of the debris flow was ~9.335 m/s and the maximum sediment thickness ~4.674 m. The latter is similar to the traces of debris flow observed in the field.

Development of Hazard Prediction Map S/W for Mountain River Road (산지하천도로 재해지도 작성을 위한 SW 개발)

  • Jang, Dae Won;Yang, Dong Min;Kim, Ki Hong
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • The objectives of this research are to develop hazard prediction map S/W for mountain river road. This mountain river road disaster happens by debris flow, landslide, debris accumulation and this cause are locally rainfall and heavy rainfall. System is constructed to GIS base. This research app lied to Kangwondo. We developed protocol to analyze calamity danger in mountain district area and examined propriety system. Furthermore examined the DB required and expression plan for hazard map creation SW construction by mountain rivers road.

  • PDF

A Study on Disaster and Recovery of Landslides at Inje Province in Korea (2006년 발생한 강원도 인제군의 산사태 피해 및 복구에 관한 연구)

  • Lee, Cheol-Ju;Park, Eun-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.9-17
    • /
    • 2009
  • The main purpose of this work is to analyse damages caused by debris flows during the heavy rainfall at Inje province in Kangwondo, Korea. A series of site investigations have been performed to survey the characteristics of debris flows occurred during the summer season of 2006. It has been found that major losses and costs are triggered by discharge of soil and rock fragments from landslides. During the rainfall unexpectedly high precipitation rate of 113.5mm/hour and 355mm/day was recorded, which could happen at a 80-500 year period. Comparing the period of the rainfall with the time of the landslides, it has been found that the occurrence of the landslides is directly related to heavy rainfalls. At present, several debris barriers have been built at the valleys and natural slopes have been protected by the seed spray method. It is intended to propose an appropriate solutions of restoration of landslide damages and maintenance based on findings from the current study.

  • PDF

A Test for Characterization on Landslides Triggering and Flow Features of Debris using a Flume test Equipment (모형실험 장치를 이용한 산사태 발생 및 사태물질 거동특성 실험)

  • Chae Byung-Gon;Song Young-Suk;Seo Yong-Seok;Cho Yong-Chan;Kim Won-Young
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.275-282
    • /
    • 2006
  • This study was conducted laboratory flume tests to identify landslide features and flow characteristics of debris using a flume test equipment. Under the several test conditions dependent on rainfall intensity and slope angle, the authors measured pore water pressure, slope failure and displacement, spreading area of debris on a regular time interval. The test processes were also recorded by video cameras and digital still cameras. According to the test results, pore water pressures have trends of direct proportion to the rainfall intensity and the slope angle, resulting in high potential of landslide triggering. The spreading area of debris is also increased with the slope angle and the rainfall intensity as well as the rainfall duration.

Landslide Triggering Rainfall Threshold Based on Landslide Type (사면파괴 유형별 강우 한계선 설정)

  • Lee, Ji-Sung;Kim, Yun-Tae;Song, Young-Karb;Jang, Dae-Heung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.12
    • /
    • pp.5-14
    • /
    • 2014
  • Most of slope failures have taken place between June and September in Korea, which cause a considerable damage to society. Rainfall intensity and duration are very significant triggering factors for landslide. In this paper, landslide-triggering rainfall threshold consisting of rainfall intensity-duration (I-D) was proposed. For this study, total 255 landslides were collected in landslide inventory during 1999 to 2012 from NDMI (National Disaster Management Institute), various reports, newspapers and field survey. And most of the required rainfall data were collected from KMA (Korea Meteorological Administration). The collected landslides were classified into three categories: debris flow, shallow landslide and unconfirmed. A rainfall threshold was proposed based on landslide type using statistical method such as quantile-regression method. Its validation was carried out based on 2013 landslide database. The proposed rainfall threshold was also compared with previous rainfall thresholds. The proposed landslide-triggering rainfall thresholds could be used in landslide early warning system in Korea.

Debris Flow Analysis of Landslide Area in Inje Using GIS (GIS를 이용한 인제 산사태발생지역의 토석류 분석)

  • Kim, Gi-Hong;Yune, Chan-Young;Lee, Hwan-Gil;Hwang, Jae-Seon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • From 12 to 16 July 2006, 4 days' torrential rainfall in Deoksan-ri, Inje-up, Inje-gun, Gangwon-do caused massive landslide and debris flow. Huge losses of both life and property, including two people buried to death in submerged houses, resulted from this disaster. As the affected region is mostly mountainous, it was difficult to approach the region and to estimate the exact extent of damage. But using aerial photographs, we can define the region and assess the damage quickly and accurately. In this study the debris flow region in inje, Gangwon-do was analyzed using aerial photographs. This region was divided into three sections - beginning section, flow section and sedimentation section. Informations for each section were extracted by digitizing the shot images with visual reading. Topographic, forest physiognomic and soil characteristics and debris flow occurrences of this region were analyzed by overlaying topographic map, forest type map and soil map using GIS. Comprehensive analysis shows that landslide begins at slope of about $36^{\circ}$, flows down at $26^{\circ}$ slope, and at $21^{\circ}$ slope it stops flowing and deposits. Among forest physiognomic factors, species of trees showd significant relationship with debris flow. And among soil factors, effective soil depth, soil erosion class, and parent materials showed meaningful relationship with debris flow.

Characteristics Analysis of Debris Flow Disaster in Korean National Parks (국립공원 지역에 있어서 토석류 재해의 특성 분석)

  • Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.4
    • /
    • pp.52-64
    • /
    • 2010
  • This study was carried out to analyze the occurrence characteristics and the influence of forest environment factors on the debris flow of 3 national parks in korea. The results obtained from this study were summarized as follows; The total number of debris flow occurrence was 125 areas. The average length of the debris flow scar was 144m, average width was 20m. And the average area and sediment were $2,854m^2$ and $3,959m^3$ respectively. The factors influencing the debris flow were highly occurred in Metamorphic rock, mixed forest type. And also, slope gradient was $30{\sim}35^{\circ}$, aspect was NE, altitude was over 1,000m, vertical and cross slope was concave (凹), soil depth was below 15cm, stream order was 0 order. The variables of cross slope (complex), deciduous tree, soil depth (over 46cm), cross slope (concave), mixed forest type and altitude (801~1200m) in correlation analysis were significant at 1 % level. The landslide of high mountain area highly tend to change the debris flow in stream bed of torrent. The debris flow in national parks mainly occurred in high mountain area with long ridge and steep slope.