• Title/Summary/Keyword: death receptor

Search Result 408, Processing Time 0.028 seconds

Overexpression and Biological Characterization of the Death Domain Complex between TRADD and FADD

  • Hwang, Eun Young;Jeong, Mi Suk;Sung, Minkyung;Jang, Se Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1089-1095
    • /
    • 2013
  • The tumor necrosis factor-receptor 1 (TNFR1)-associated death domain protein (TRADD) contains an N-terminal TRAF binding domain and a C-terminal death domain. TRADD is known to interact directly with TNF receptor 2 (TNFR2) and the Fas-associated death domain protein (FADD), which are signal transducers that activate NF-${\kappa}B$ and induce apoptosis, respectively. To date, there has been no structural information on the TRADD and FADD death domain (DDs) complex. In this study, the death domains of TRADD and FADD were co-expressed and purified from Escherichia coli for structural characterization. We found that human TRADD (hTRADD) interacted strongly with mouse FADD (mFADD) via their DDs and interacted weakly with human FADD (hFADD)-DD. Moreover, the structures of the TRADD-DD:FADD-DD complexes were separately modeled from predicted structures in the protein data bank (PDB). The results of this study will have important applications in human diseases such as cancer, AIDS, degenerative and autoimmune diseases, and infectious diseases.

The Effect of Topiramate on Hippocampal Neuronal Death and Expression of Glutamate Receptor in Kainate-induced Status Epilepticus Model (Kainate 유발 간질중첩증 모델에서 topiramate가 해마 신경세포사와 glutamate 수용체 발현에 미치는 영향)

  • Park Min-Jeong;Ha Se-Un;Bae Hae-Rahn;Kim Sang-Ho
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.505-512
    • /
    • 2005
  • Excitotoxicity and epileptogenesis have often been associated with glutamate receptor activation. Accumulating evidences indicates that topiramate (TPM), an antiepileptic drug with multiple mechanisms of action has neuroprotective activity. We explored the neuroprotective effect of TPM on the status epilepticus (SE)-induced hippocampal neuronal death. After development of SE by kainite injection (15 mg/Kg), rats were treated with TPM (10mg/kg) for 1 week. The neuronal death was detected by Apop tag in situ detection kit, and the expression levels of glutamate receptors were semi-quantitatively analyzed by immunoblot. Kainate-induced SE caused a significant neuronal death and cell loss in CAI and CA3 regions of hippocampus at 1 week. However, treatment of TPM for 1 week after SE markedly reduced hippocampal neuronal death. The expression of N-methyl-D-aspartate (NMDA) receptor subunit 1, was increased by SE, but was not affected by 1 week treatment of TPM. The expressions of NMDA receptor subunit 2a and 2b were not changed by either SE or TPM. As for ${\alpha}-amino-3-hydroxy-5-methyl-4-isoxazole-propionate$ (AMPA) glutamate receptors (GluR), kainate-induced SE markedly up-regulated GluR1 expression but down-regulated GluR2 expression, leading to increased formation of $Ca^{2+}$ permeable GluR2- lacking AMPA receptors. TPM administration for 1 week attenuated SE-induced expression of both the up-regulation of GluR1 and down-regulation of GluR2, reversing the ratio of GluR1/GluR2 to the control value. In conclusion, TPM protects neuronal cell death against glutamate induced excitotoxicity in kainate-induced SE model, supporting the potential of TPM as a neuroprotective agent.

Conditioned Medium from Dying Smooth Muscle Cell Induced Apoptotic Death

  • Bu, Moon-Hyun;Lee, Kyeong-Ah;Kim, Koan-Hoi;Rhim, Byung-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.315-322
    • /
    • 2005
  • In this study, the authors investigated whether death of vascular smooth muscle cell (VSMC) had a pathological pertinence. Conditioned media obtained from rat aorta smooth muscle cell (SMC) that were induced death by expressing FADD in the absence of tetracycline (FADD-SMC) triggered death of normal SMC. DNA fragmentation and caspase-3 activation were observed in dying SMC by conditioned media. FADD-SMC showed transcriptional activation of tumor necrosis factor $(TNF)-{\alpha}$. Conditioned medium contained $TNF-{\alpha}$, indicating secretion of the cytokine from dying FADD-SMC. It was investigated if secreted $TNF-{\alpha}$ was functional. Conditioned medium activated ERK and p38 MAPK pathways and induced MMP-9 expression, whereas depletion of the cytokine with its soluble receptor (sTNFR) remarkably inhibited induction of MMP-9 by conditioned medium. These findings suggest that $TNF-{\alpha}$ in conditioned medium seems to be active. Then, contribution of $TNF-{\alpha}$ on death-inducing activity of conditioned medium was examined. Depletion of $TNF-{\alpha}$ with soluble $TNF-{\alpha}$ receptor decreased the death activity of conditioned medium by 35%, suggesting that $TNF-{\alpha}$ play a partial role in the death activity. Boiling of medium almost completely abolished the death-inducing activity, suggesting that other heat labile death inducing proteins existed in conditioned medium. Taken together, these results indicate that SMC undergoing death could contribute to inflammation by expressing inflammatory cytokines and pathological complications by inducing death of neighboring cells.

Roles of metabotropic glutamate receptor 5 in low [Mg2+]o-induced interictal epileptiform activity in rat hippocampal slices

  • Ji Seon Yang;Hyun-Jong Jang;Ki-Wug Sung;Duck-Joo Rhie;Shin Hee Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.5
    • /
    • pp.413-422
    • /
    • 2024
  • Group I metabotropic glutamate receptors (mGluRs) modulate postsynaptic neuronal excitability and epileptogenesis. We investigated roles of group I mGluRs on low extracellular Mg2+ concentration ([Mg2+]o)-induced epileptiform activity and neuronal cell death in the CA1 regions of isolated rat hippocampal slices without the entorhinal cortex using extracellular recording and propidium iodide staining. Exposure to Mg2+-free artificial cerebrospinal fluid can induce interictal epileptiform activity in the CA1 regions of rat hippocampal slices. MPEP, a mGluR 5 antagonist, significantly inhibited the spike firing of the low [Mg2+]o-induced epileptiform activity, whereas LY367385, a mGluR1 antagonist, did not. DHPG, a group 1 mGluR agonist, significantly increased the spike firing of the epileptiform activity. U73122, a PLC inhibitor, inhibited the spike firing. Thapsigargin, an ER Ca2+-ATPase antagonist, significantly inhibited the spike firing and amplitude of the epileptiform activity. Both the IP3 receptor antagonist 2-APB and the ryanodine receptor antagonist dantrolene significantly inhibited the spike firing. The PKC inhibitors such as chelerythrine and GF109203X, significantly increased the spike firing. Flufenamic acid, a relatively specific TRPC 1, 4, 5 channel antagonist, significantly inhibited the spike firing, whereas SKF96365, a relatively non-specific TRPC channel antagonist, did not. MPEP significantly decreased low [Mg2+]o DMEM-induced neuronal cell death in the CA1 regions, but LY367385 did not. We suggest that mGluR 5 is involved in low [Mg2+]o-induced interictal epileptiform activity in the CA1 regions of rat hippocampal slices through PLC, release of Ca2+ from intracellular stores and PKC and TRPC channels, which could be involved in neuronal cell death.

Pan-Caspase Inhibitor zVAD Induces Necroptotic and Autophagic Cell Death in TLR3/4-Stimulated Macrophages

  • Chen, Yuan-Shen;Chuang, Wei-Chu;Kung, Hsiu-Ni;Cheng, Ching-Yuan;Huang, Duen-Yi;Sekar, Ponarulselvam;Lin, Wan-Wan
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.257-272
    • /
    • 2022
  • In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.

Apoptotic Process is Involved in the L-Glutamate-Induced PC12 Cell Death (L-Glutamate에 의한 PC12 세포의 고사성 사망)

  • Sung, Ki-Wug;Jung, Kyung-Heui;Kim, Seong-Yun;Kang, Jung-Hyae;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.699-705
    • /
    • 1997
  • Although it is known that neuronal cell death during development occurs by apoptosis, the mechanisms underlying excitatory amino acid-induced neuronal cell death remain poorly understood. In this study we have examined the mechanism by which L-glutamate, an excitatory amino acid neurotransmitter, induces cell death in PC12 cell lines. To characterize cell death, we employed sandwich enzyme-linked immunosorbent assay(ELISA) method for cellular DNA fragmentation, DNA agarose gel electrophoresis and chromatin staining by acridine orange and ethidium bromide after treating the PC12 cells with L-glutamate. L-Glutamate caused dose-dependent cell death with a maximum at 24 hrs after the treatment. These cellular fragmentation was blocked by pretreatment of MK-801, a noncompetitive N-methyl-D-aspartic acid(NMDA) receptor antagonist, and nerve growth factor(NGF). Analysis of DNA integrity from L-glutamate-treated cells revealed cleavage of DNA into regular sized fragments, a biochemical hallmark of apoptosis. The PC12 cells that were induced to die by L-glutamate treatment exhibited classical chromatin condensation under the light microscopy after acridine orange and ethidium bromide staining. These results suggest that apoptosis is one of the key features that are involved in L-glutamate-induced excitotoxic cell death in PC12 cells, and these cell death are mediated by NMDA receptor and depend on NGF.

  • PDF

Effects of Spermine on Quisqualate-induced Excitotoxicity in Rat Immature Cortical Neurons (흰쥐 미숙 대뇌피질 신경세포에서 Quisqualate로 유발된 흥분성 세포독성에 대한 spermine의 영향)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.535-540
    • /
    • 1999
  • Glutamate (Glu) receptor-mediated excitoxicity has been implicated in many acute and chronic types of neurological disorders. Exposure of mature rat cortical neurons (15-18 days in culture) to the various concentrations of Glu resulted in a marked neuronal death, whereas immature rat cortical neurons (4∼5 days in culture) were resistant to the Glu-induced toxicity. Glu receptor subtype-specific agonists showed differential extent of toxicity in the immature neurons. The neurons treated with NMDA or kainate (KA) did not exhibit damage. However, quisqualate (QA) treatment induced a considerable cell death (36.1%) in immature enurons. The non-NMDA antagonist DNQX did not reduce this response. Interestingly, the QA-induced toxicity was potentiated by spermine in a concentration-dependent manner. Again, the spermine-enhanced damage was not altered by the polyamine antagonist ifenprodil. Taken together, unlike NMDA or KA, QA can induce neurotoxicity in immature rat cortical neurons and the QA-induced toxicity was potentiated by spermine. The lack of antagonizing effects of DNQX and ifenprodil on QA-induced toxicity and the potentiated toxicity by spermine, respectively, implies that both QA receptor and the polyamine site of NMDA receptor may not mediate the neurotoxicity observed in this study, and that a distinct mechanism(s) may be involved in excitotoxicity in immature neurons.

  • PDF

Roles of Neutral Sphingomyelinase 1 on CD95-Mediated Apoptosis in Human Jurkat T Lymphocytes

  • Lee, Hyun-Min;Surh, Bo-Young;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.262-270
    • /
    • 2010
  • CD95 receptor is a member of tumor necrosis factor receptor family that mediates apoptosis in many cell types when bound by CD95 ligand or cross-linked by agonistic anti-CD95 antibodies. To determine the role of neutral sphingomyelinase (nSMase) on CD95-mediatd apoptosis, human Jurkat T lymphocytes were exposed to recombinant human CD95 ligand. Treatment with CD95 ligand induced cell death in a concentration and time-dependent manner. CD95-induced cell death was suppressed by inhibitors of SMase such as AY9944 or desipramine. Transfection with human nSMase1 siRNA plasmid into CD95 ligand-treated cells significantly prevented CD95-mediated cell death. CD95-mediated elevation of intracellular ceramide level detected by FACS analysis with anti-ceramide antibody was also decreased by nSMase1 siRNA. Knock-down of nSMase1 expression also blocked cytochrome c release into cytosol and caspase-3 cleavage in CD95-treated cells. Taken together, these results suggest that nSMase1 may play an important role in CD95-mediated apoptotic cell death in Jurkat T cells.

The Effect of overcoming the TRAIL resistance through bufalin in EJ human bladder cancer cell (EJ 인간 방광암 세포에서 bufalin 의 TRAIL 저항성 극복 효과)

  • Hong, Su Hyun
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2017
  • Objectives : Bufalin is one of the bioactive component of 'Sum Su (蟾酥)', which is obtained from the skin and parotid venom gland of toad. Bufalin has been known to possess the inhibitory effects on cell proliferation and inducing apoptosis in various cancer cells. The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has concerned, because it can selectively induce apoptotic cell death in many types of malignant cells, while it is relatively non-toxic to normal cells. Here, we investigated whether bufalin can trigger TRAIL-induced apoptotic cell death in EJ human bladder cancer cells. Methods : Effects on the cell viability and apoptotic activity were quantified using MTT assay and flow cytometry analysis, respectively. To investigate the morphological change of nucleus, DAPI staining was performed. Protein expressions were measured by immunoblotting. Results : A combined treatment with bufalin (10 nM) and TRAIL (50 ng/ml) significantly promoted TRAIL-mediated growth inhibition and apoptosis in EJ cells. The apoptotic effects were associated with the up-regulation of death receptor proteins, and the down-regulation of cFLIP and XIAP. Moreover, our data showed that bufalin and TRAIL combination activated caspases and subsequently increased degradation of poly(ADP-ribose) polymerase. Conclusions : Taken altogether, the nontoxic doses of bufalin sensitized TRAIL-mediated apoptosis in EJ cells. Therefore, bufalin might be an effective therapeutic strategy for the safe treatment of TRAIL-resistant bladder cancers.

Bcl-2 Knockdown Accelerates T Cell Receptor-Triggered Activation-Induced Cell Death in Jurkat T Cells

  • Lee, Yun-Jung;Won, Tae Joon;Hyung, Kyeong Eun;Lee, Mi Ji;Moon, Young-Hye;Lee, Ik Hee;Go, Byung Sung;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.73-78
    • /
    • 2014
  • Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-2 expression in Jurkat T cells, and this increased TCR-triggered AICD and enhanced TNFR gene expression. Also, knockdown of Bcl-2 in Jurkat T cells suppressed the gene expression of FLIP, TNF receptor-associated factors 3 (TRAF3) and TRAF4. Furthermore, suppressed Bcl-2 expression increased caspase-3 and diminished nuclear factor kappa B (NF-${\kappa}B$) translocation.