• 제목/요약/키워드: dead-reckoning

검색결과 190건 처리시간 0.029초

관광지안내로봇용 위치인식 시스템에 관한 연구 (A Study on a Localization System for Tour Guide Robot)

  • 임종환
    • 한국정밀공학회지
    • /
    • 제29권7호
    • /
    • pp.762-769
    • /
    • 2012
  • The localization system for tour guide robot was developed which is inevitable and important for the guide robot in order to guide the tourists and explain the history or contents of the site. The localization system is based on the non-inertial sensors such as a DGPS, Dead-Reckoning. The information of the DGPS is used to update the estimated positions from Dead Reckoning. The extended Kalman filter was used for the fusion of the measured information from the sensors and estimated positions by Dead Reckoning. The simulation results show that it is very reliable and the position error is bounded within a certain extend.

자동차 항법 시스템에서 DGPS와 CCD를 결합한 위치오차의 최소화에 관한 연구 (A Study on the Minimization of Position error Using the DGPS and CCD in the Car Navigation)

  • 권혁대;송석우;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.82-82
    • /
    • 2000
  • The way which estimates a position from Navigation is Dead-reckoning Navigation and Radio Navigation. Generally dead-reckoning navigation uses Gyro and odometer as sensor, but these have problems which are an integrating noise and a noise-sensitivity. Gps which is used by radio-navigation has a Troposthetic error and MultiPath ewer and so on. For minimizing a Troposthetic error and a Multipath error, this paper suggests to an algorithm which use vanishing point on CCD camera.

  • PDF

New Map-Matching Algorithm Using Virtual Track for Pedestrian Dead Reckoning

  • Shin, Seung-Hyuck;Park, Chan-Gook;Choi, Sang-On
    • ETRI Journal
    • /
    • 제32권6호
    • /
    • pp.891-900
    • /
    • 2010
  • In this paper, a map-matching (MM) algorithm which combines an estimated position with digital road data is proposed. The presented algorithm using a virtual track is appropriate for a MEMS-based pedestrian dead reckoning (PDR) system, which can be used in mobile devices. Most of the previous MM algorithms are for car navigation systems and GPS-based navigation system, so existing MM algorithms are not appropriate for the pure DR-based pedestrian navigation system. The biggest problem of previous MM algorithms is that they cannot determine the correct road segment (link) due to the DR characteristics. In DR-based navigation system, the current position is propagated from the previous estimated position. This means that the MM result can be placed on a wrong link when MM algorithm fails to decide the correct link at once. It is a critical problem. Previous algorithms never overcome this problem because they did not consider pure DR characteristics. The MM algorithm using the virtual track is proposed to overcome this problem with improved accuracy. Performance of the proposed MM algorithm was verified by experiments.

GPS와 추축항법을 이용항 개인휴대 항법시스템 (Personal Navigation System Using GPS and Dead Reckoning)

  • 홍진석;윤선일;지규인
    • 제어로봇시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.454-464
    • /
    • 2001
  • In this paper, a personal navigation system is developed using GPS and dead reckoning sensors. This personal navigation system can be used to track a person inside a building, on an urban street, and in the mountain area. GPS can provide accurate absolute position information, but it cant be used without receiving enough satellite signals. Although the inertial sensors such as gyro an accelerometer and be used without this diggiculty, the inertial sensors severely suffer from their drift errors and the magne-tometer can be easily distorted by surrounding electromagnetic field. GPS and DR sensors can be inte-grated together to overcome these problems. A new personal navigation system that can be carried wit person is developed. A pedometer. actually vertically mounted accelerometer, detects ones footstep and gyro detects heading angle. These DR sensors are integrated with GPS and the humans walking pattern provides additional navigation information for compensating the DR sensors. The field testes are performed to evaluated the proposed navigation algorithm.

  • PDF

Comparison of Drift Reduction Methods for Pedestrian Dead Reckoning Based on a Shoe-Mounted IMU

  • Jung, Woo Chang;Lee, Jung Keun
    • 센서학회지
    • /
    • 제28권6호
    • /
    • pp.345-354
    • /
    • 2019
  • The 3D position of pedestrians is a physical quantity used in various fields, such as automotive navigation and augmented reality. An inertial navigation system (INS) based pedestrian dead reckoning (PDR), hereafter INS-PDR, estimates the relative position of pedestrians using an inertial measurement unit (IMU). Since an INS-PDR integrates the accelerometer signal twice, cumulative errors occur and cause a rapid increase in drifts. Various correction methods have been proposed to reduce drifts. For example, one of the most commonly applied correction method is the zero velocity update (ZUPT). This study investigated the characteristics of the existing INS-PDR methods based on shoe-mounted IMU and compared the estimation performances under various conditions. Four methods were chosen: (i) altitude correction (AC); (ii) step length correction (SLC); (iii) advanced heuristic drift elimination (AHDE); and (iv) magnetometer-based heading correction (MHC). Experimental results reveal that each of the correction methods shows condition-sensitive performance, that is, each method performs better under the test conditions for which the method was developed than it does under other conditions. Nevertheless, AC and AHDE performed better than the SLC and MHC overall. The AC and AHDE methods were complementary to each other, and a combination of the two methods yields better estimation performance.

모바일 장치용 MEMS 기반 보행항법시스템을 위한 맵매칭 알고리즘 (Map-Matching Algorithm for MEMS-Based Pedestrian Dead Reckoning System in the Mobile Device)

  • 신승혁;김현욱;박찬국;최상언
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1189-1195
    • /
    • 2008
  • We introduce a MEMS-based pedestrian dead reckoning (PDR) system. A walking navigation algorithm for pedestrians is presented and map-matching algorithm for the navigation system based on dead reckoning (DR) is proposed. The PDR is equipped on the human body and provides the position information of pedestrians. And this is able to be used in ubiquitous sensor network (USN), U-hearth monitoring system, virtual reality (VR) and etc. The PDR detects a step using a novel technique and simultaneously estimates step length. Also an azimuth of the pedestrian is calculated using a fluxgate which is the one of magnetometers. Map-matching algorithm can be formulated to integrate the positioning data with the digital road network data. Map-matching algorithm not only enables the physical location to be identified from navigation system but also improves the positioning accuracy. However most of map-matching algorithms which are developed previously are for the car navigation system (CNS). Therefore they are not appropriate to implement to pedestrian navigation system based on DR system. In this paper, we propose walking navigation system and map-matching algorithm for PDR.

이동로봇의 Localization을 위한 Gryo sensor에 의한 Odometry Error 보정에 관한 연구 (Odometry error correction by Gyro sensor for mobile robot localization)

  • 박시나;노영식;최원태;홍현주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.597-599
    • /
    • 2005
  • To make the autonomous mobile robot move in the unknown space, we have to know the information of current location of the robot. So far, the location information that was obtained using Encoder always includes Dead Reckoning Error, which is accumulated continuously and gets bigger as the distance of movement increases. In this paper, we analyse the effect of the size of the two wheels of the mobile robot and the wheel track of them among the factors of Dead Reckoning Error. And after this, we compensate this Dead Reckoning Error by Kalman filter using Gyro Sensors. To accomplish this, we develop the controller to analyse the error components of Gyro Sensor and to minimize the error values. We employ the numerical approach to analyse the error components by linearizing them because each error component is nonlinear. And we compare the improved result through simulation.

  • PDF

Symmetric Position Drift of Integration Approach in Pedestrian Dead Reckoning with Dual Foot-mounted IMU

  • Lee, Jae Hong;Cho, Seong Yun;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권2호
    • /
    • pp.117-124
    • /
    • 2020
  • In this paper, the symmetric position drift of the integration approach in pedestrian dead reckoning (PDR) system with dual foot-mounted IMU is analyzed. The PDR system that uses the inertial sensor attached to the shoe is called the IA-based PDR system. Since this system is designed based on the inertial navigation system (INS), it has the same characteristics as the error of the INS, then zero-velocity update (ZUPT) is used to correct this error. However, an error that cannot be compensated perfectly by ZUPT exists, and the trend of the position error is the symmetric direction along the side of the shoe(left, right foot) with the IMU attached. The symmetric position error along the side of the shoe gradually increases with walking. In this paper, we analyze the causes of symmetric position drift and show the results. It suggests the possibility of factors other than the error factors that are generally considered in the PDR system based on the integration approach.

위성항법 기반 AGV의 안전성 향상 시험 (Safety Improvement Test of a GNSS-based AGV)

  • 강우용;이은성;한지애;허문범;남기욱
    • 한국항행학회논문지
    • /
    • 제14권5호
    • /
    • pp.648-654
    • /
    • 2010
  • 본 논문에서는 위성항법 기반의 위치 정보를 이용하여 주행하는 AGV(Autonomous Guided Vehicle)의 안전성을 향상시키기 위한 항법 시스템을 구성하고 성능 시험을 수행하였다. 이를 위해 위성항법 신호에 급격한 오차를 감지하고 위성항법 신호가 단절된 경우에도 연속적인 주행이 가능하도록 DR(Dead Reckoning) 항법 시스템을 구성하였다. 주행 시험 결과 0.15m이상의 위성항법 오차를 감지할 수 있었으며 8초의 위성항법 신호 단절에서 약 1.5m 이내의 오차로 안정적인 주행을 확인할 수 있었다.

A THREE DIMENSIONAL LOCATION SYSTEM FOR HIKER WALKING SPEEDS BASED ON CONTOUR LINES

  • Wu, Mary;Ahn, Kyung-Hwan;Chen, Ni;Kim, Chong-Gun
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.703-714
    • /
    • 2009
  • GPS is especially suitable for location systems in flat areas, but the availability of GPS is limited in highly urbanized and mountain areas, due to the nature of satellite communications. Dead reckoning is generally used to solve a location problem when a pedestrian is out of range of GPS coverage. To extend the apparent coverage of the GPS system for a hiker in mountain areas, we propose an integrated 3D location system that interpolates a 3D dead reckoning system based on information about contour lines. The speeds of hikers vary according to the inclination of the ground in sloped areas such as mountains. To reduce location measurement errors, we determine the angle of inclination based on the contour lines of the mountain, and use the speeds based on the inclination in the location system. The simulation results show that the proposed system is more accurate than the existing location system.

  • PDF