• Title/Summary/Keyword: dead pixel detection

Search Result 6, Processing Time 0.016 seconds

Dead Pixel Detection Method by Different Response at Hot & Cold Images for Infrared Camera

  • Ye, Seong-Eun;Kim, Bo-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.1-7
    • /
    • 2018
  • In this paper, we propose soft dead pixels detection method by analysing different response at hot and cold images. Abnormal pixels are able to effect detecting a small target. It also makes confusing real target or not cause of changing target size. Almost exist abnormal pixels after image signal processing even if dead pixels are removed by dead pixel compensation are called soft dead pixels. They are showed defect in final image. So removing or compensating dead pixels are very important for detecting object. The key idea of this proposed method, detecting dead pixels, is that most of soft deads have different response characteristics between hot image and cold image. General infrared cameras do NUC to remove FPN. Working 2-reference NUC must be needed getting data, hot & cold images. The way which is proposed dead pixel detection is that we compare response, NUC gain, at each pixel about two different temperature images and find out dead pixels if the pixels exceed threshold about average gain of around pixels.

Spatial Compare Filter Based Real-Time dead Pixel Correction Method for Infrared Camera

  • Moon, Kil-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.35-41
    • /
    • 2016
  • In this paper, we propose a new real-time dead pixel detection method based on spatial compare filtering, which are usually used in the small target detection. Actually, the soft dead and the small target are cast in the same mold. Our proposed method detect and remove the dead pixels as applying the spatial compare filtering, into the pixel outputs of a detector after the non-uniformity correction. Therefore, we proposed method can effectively detect and replace the dead pixels regardless of the non-uniformity correction performance. In infrared camera, there are usually many dead detector pixels which produce abnormal output caused by manufactural process or operational environment. There are two kind of dead pixel. one is hard dead pixel which electronically generate abnormal outputs and other is soft dead pixel which changed and generated abnormal outputs by the planning process. Infrared camera have to perform non-uniformity correction because of structural and material properties of infrared detector. The hard dead pixels whose offset values obtained by non-uniformity correction are much larger or smaller than the average can be detected easily as dead pixels. However, some dead pixels(soft dead pixel) can remain, because of the difficulty of uncleared decision whether normal pixel or abnormal pixel.

An Efficient Dead Pixel Detection Algorithm and VLSI Implementation (효율적인 불량화소 검출 알고리듬 및 하드웨어 구현)

  • An Jee-Hoon;Lee Won-Jae;Kim Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.38-43
    • /
    • 2006
  • In this paper, we propose the efficient dead pixel detection algorithm for CMOS image sensors and its hardware architecture. The CMOS image sensors as image input devices are becoming popular due to the demand for miniaturized, low-power and cost-effective imaging systems. However, the presence of the dead pixels degrade the image quality. To detect the dead pixels, the proposed algorithm is composed of scan, trace and detection step. The experimental results showed that it could detect 99.99% of dead pixels. It was designed in a hardware description language and total logic gate count is 3.2k using 0.25 CMOS standard cell library.

Design of Real-Time Dead Pixel Detection and Compensation System for Image Quality Enhancement in Mobile Camera (모바일 카메라 화질 개선을 위한 실시간 불량 화소 검출 및 보정 시스템의 설계)

  • Song, Jin-Gun;Ha, Joo-Young;Park, Jung-Hwan;Choi, Won-Tae;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.4
    • /
    • pp.237-243
    • /
    • 2007
  • In this paper, we propose the Real-time Dead-Pixel Detection and Compensation System for mobile camera and its hardware architecture. The CMOS image sensors as image input devices are becoming popular due to the demand for miniaturized, low-power and cost-effective imaging systems. However a conventional Dead-Pixel Detection Algorithm is disable to detect neighboring dead pixels and it degrades image quality by wrong detection and compensation. To detect dead pixels the proposed system is classifying dead pixels into Hot pixel and Cold pixel. Also, the proposed algorithm is processing line-detector and $5{\times}5$ window-detector consecutively. The line-detector and window-detector can search dead pixels by using one-dimensional(only horizontal) method in low frequency area and two-dimensional(vertical and diagonal) method in high frequency area, respectively. The experimental result shows that it can detect 99% of dead pixels. It was designed in Verilog hardware description language and total gate count is 23K using TSMC 0.25um ASIC library.

  • PDF

An Efficient Dead Pixel Detection Algorithm Implementation for CMOS Image Sensor (CMOS 이미지 센서에서의 효율적인 불량화소 검출을 위한 알고리듬 및 하드웨어 설계)

  • An, Jee-Hoon;Shin, Seung-Gi;Lee, Won-Jae;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.55-62
    • /
    • 2007
  • This paper proposes a defective pixel detection algorithm and its hardware structure for CCD/CMOS image sensor. In previous algorithms, the characteristics of image have not been considered. Also, some algorithms need quite a time to detect defective pixels. In order to make up for those disadvantages, the proposed defective pixel detection method detects defective pixels efficiently by considering the edges in the image and verifies them using several frames while checking scene-changes. Whenever scene-change is occurred, potentially defective pixels are checked and confirmed whether it is defective or not. Test results showed that the correct detection rate in a frame was increased 6% and the defective pixel verification time was decreased 60%. The proposed algorithm was implemented with verilog HDL. The edge indicator in color interpolation block was reused. Total logic gate count was 5.4k using 0.25um CMOS standard cell library.

Removal of Ring Artifact in Computed Tomography (전산화단층촬영장치에서 링 아티팩트 제거)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.403-408
    • /
    • 2015
  • Hard X-ray has been widely used in medical and industrial fields because it can be applied to observe the inside of a sample. Computed tomography provides sectional images of the sample through the reconstruction of the projection images. The quality of sectional images strongly depends on that of projection images. Ring artifact appeared on the seconal image can be made by the abnormal pixels of the detector used. In this study, we examine the ring artifact ratio in the circle phantom as a function of detection error of the detector used in computed tomography. The ring artifact increased with the increment of detection error under parallel and fan beam geometries and strongly increased near the center of rotation. The corrections, dead pixel and flat field corrections, for the images taken with the detector are required before the image reconstruction process to reduce the ring artifact in the computed tomography.