• Title/Summary/Keyword: dead load stress

Search Result 54, Processing Time 0.021 seconds

Physical and Mechanical Properties of Synthetic Lightweight Aggregate Concrete (인공경량골재(人工輕量骨材) 콘크리트 물리(物理)·역학적(力學的) 특성(特性))

  • Kim, Seong Wan;Min, Jeong Ki;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.182-193
    • /
    • 1997
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. Therefore, many engineers are continuously searching for new materials of construction to provide greater performance at lower density. The main purpose of the work described in this paper were to establish the physical and mechanical properties of synthetic lightweight aggregate concrete using perlite on fine aggregate and expanded clay, pumice stone on coarse aggregate. The test results of this study are summarized that the water-cement ratio was shown 47% using expanded clay, 56% using pumice stone on coarse aggregate, unit weight was shown $l,622kgf/m^3$ using expanded clay, $l,596kgf/m^3$ using pumice stone on coarse aggregate, and the absorption ratio was shown same as 17%. The compressive strength was shown more than $228kgf/cm^2$, tensile and bending strength was more than $27kgf/cm^2$, $58kgf/cm^2$ at all types, and rebound number with schmidt hammer was increased with increase of compressive strength. The static modulus was $1.12{\times}10^5kgf/cm^2$ using expanded clay, $1.09{\times}10^5kgf/cm^2$ using pumice stone on coarse aggregate, and stress-strain curves were shown that increased with increase of stress, and the strain on the maximum stress was shown identical with $2.0{\times}10^{-3}$, approximately.

  • PDF

Damage Evaluation of Glass Fiber/PET Composite Using Acoustic Emission Method (음향방출법을 이용한 Glass Fiber/PET 복합재료의 손상평가)

  • 김상태;김덕윤
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • In this study, damage evaluation of glass fiber reinforced thermoplastic composites was investigated with acoustic emission method. Specimens of 1.7mm thickness laminate were made from PET and 7 layers o171ass fabrics. Notch and impact loading were added to the specimen and normal tensile test and tensile test with the dead load were carried out. AE signal was measured as the functions of notch ratio to the width0 and impact energy in order to find out the correlation between fracture mode and AE parameters. The result has shown that low amplitude of AE signal was due to the microcrack of matrix and its growth, whereas the amplitude in the mid range was the response to the delamination and interfacial separation. In the range of high amplitude above 90dB. the fracture of glass fabric was found. Tensile strength decreased with increasing notch ratio to the width and impact energy because of tile effect or delamination, the cracking of matrix and stress concentration. In proportion to the size of damaged area. AE signal showed its wider range of frequency and energy as well as increased number of hits.

  • PDF

Evaluation of Analysis Code of Corrugated Steel Plate Lining in Cut-and-Cover Tunnel (개착식 터널에서 파형강판 라이닝의 해석 기법 평가)

  • Kim, Jung-Ho;Kim, Nak-Young;Lee, Yong-Jun;Lee, Seung-Ho;Hwang, Young-Chul;Cho, Chul-Shin;Chung, Hyung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1316-1323
    • /
    • 2005
  • Most tunnel lining material which has been used in the domestic is a concrete. But many problems as the construction period, the cost, and the crack occurrence for the design, construction, and management were happened in the concrete lining. For this reason, many research institutes like the Korea Highway Corporation recognize the necessity of an alternate material development and grow on the interest for that. So in this study, the behaviour characteristics for the application of the Corrugated Steel Plate Lining in cut-and-cover tunnel are evaluated as several conditions for the backfill height, the cutting slope, and the relative density of backfill soil are changed. In addition, through using that conditions, CHBDC(2000, Canadian Highway Bridge Design Code) is evaluated if it could be applied to the design by comparing with the numerical analysis results. As the behaviour characteristics of the Corrugated Steel Plate Lining by CHBDC and the static numerical analysis are analyzed, both the methods show the same linear increases of the compressive stress according to the increase of the backfill height. The CHBDC of the dead load condition has very similar tendency by comparing with the result of the static numerical analysis.

  • PDF

Physical and Mechanical Properties of Expanded Polystyrene Bead Concrete (팽창 폴리스틸렌 비드 콘크리트의 물리.역학적 특성)

  • 민정기;김성완;성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.83-95
    • /
    • 1996
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. So, main purpose of this study was to establish the physical and mechanical properties of lightweight concrete using expanded polystyrene bead on fine aggregate and natural gravel, expanded clay and pumice stone on coarse aggregate. The test rusults of this study are summarized as follows; 1. The water-cement ratio of concrete using pumice stone was larger than that of the concrete using natural gravel and expanded clay. 2. The unit weights of concrete using pumice stone and expanded caly were shown less than 1,000g/$m^3$. 3. The compressive strengths of all types were shown less than 60kg/$cm^2$, tensile and bending strengths were shown less than l3kg/$cm^2$ and 3lkg/$cm^2$$^2$, respectively. 4. The pulse velocity of concrete was shown similar with using natural gravel and pumice stone, and shown the lowest using pumice stone. 5. The dynamic modulus of elasticity of concrete was shown considerably smaller, and shown the lowest using pumice stone. 6. The static modulus of elasticity of concrete using expanded clay and pumice stone were shown considerably smaller, and shown 22% ~29% as compared with the dynamic modulus of elasticity. 7. The stress-strain curves of concrete were shown similar, generally. And the curves were repeated at short intervals increase and decreased irregularly.

  • PDF