• Title/Summary/Keyword: deacclimation

Search Result 2, Processing Time 0.015 seconds

Effect of Cold Acclimation and Deacclimation on the Freezing Tolerance, Total RNA, Soluble Protein and Soluble Sugar in Chinese Cabbage (저온순화 및 탈순화가 배추의 내동성 및 total RNA, soluble protein, soluble sugar 함량에 미치는 영향)

  • Jeong Hyun Nam;Won Hee Kang;Il Seop Kim
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.244-250
    • /
    • 2001
  • This study was conducted to determine the change in freezing tolerance of Chinese cabbage (Brassica campestris L. ssp. penkinensis). Four-week old seedlings grown in a greenhouse at $25^{\circ}C$$\pm$0.5 were transferred to 5, 10 or 15$^{\circ}C$ condition for acclimation for one day, and then transferred to a lethal temperature of -3$^{\circ}C$ condition. Optimal acclimation temperatures were 5$^{\circ}C$ and 1$0^{\circ}C$. Freezing tolerance of leaf tissues was investigated during a week-long cold stress. Development of freezing tolerance was shown by survival ratio, and amounts of total RNA, soluble protein and soluble sugar. LT$_{50}$ value increased from -3 to -4$^{\circ}C$ after 5 days acclimation at 5 or 1$0^{\circ}C$, and this was considered to be the first indication of enhanced freezing tolerance. Plants, cold acclimated for five days, reached to a survival ratio of 60%. This increase in freezing tolerance was found to be associated with the increased levels of total RNA, soluble sugar and soluble protein. These metabolic changes imply the association of adjustment of growth and cell metabolism with low temperatures at the beginning of cold acclimation in chinese cabbage.e.

  • PDF

Emerging Research Advancements to Overcome the Peach Spring Frost

  • Pandiyan Muthuramalingam;Rajendran Jeyasri;Yeonju Park;Seongho Lee;Jae Hoon Jeong;Yunji Shin;Jinwook Kim;Sangmin Jung;Hyunsuk Shin
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.220-233
    • /
    • 2023
  • The phenomena of global warming has led to an increase in the average air temperature in temperate climates. Springtime frost damage is becoming more common, and after a period of dormancy, damage to buds, blooms, and developing fruits is greater significant than damage from low winter temperatures. Peaches are a crucial crop among moderate fruits. Spring frost damage in peaches can have a negative effect on crop growth, yield, and quality. It is noteworthy that these plants have evolved defenses against spring frost damage while being exposed to a variety of low temperatures in the early spring. In this current review, recent research advancements on spring frost damage avoidance in peaches were deliberated. Additionally, adaptive mechanisms of peach, such as deacclimation and reacclimation, were emphasized. Moreover, the emerging advancements using various omics approaches revealed the peach physiology and molecular mechanisms comprehensively. Furthermore, the use of chemical products and understanding the spring frost mechanisms through the use of environmental chamber temperature stimulation and infrared thermography studies were also discussed. This review is essential groundwork and paves the way to derive and design future research for agronomists and horticulturalists to overcome the challenges of spring frost damage avoidance and crop management in these circumstances.