• Title/Summary/Keyword: de novo sequencing

Search Result 83, Processing Time 0.025 seconds

Mercury Resistance and Removal Mechanisms of Pseudomonas sp. Isolated Mercury-contaminated Site in Taiwan

  • Luo, Kai-Hong;Chen, Ssu-Ching;Liao, Hung-Yu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.5
    • /
    • pp.16-24
    • /
    • 2016
  • A new strain of Pseudomonas sp. was isolated from mercury (Hg)-contaminated sites in Taiwan. This bacterium removed more than 80% of Hg present in the culture medium at 12 h incubation and was chosen for further analysis of the molecular mechanisms of Hg tolerance/removal abilities in this Pseudomonas sp. We used RNA-seq, one of the next-generation sequencing methods, to investigate the transcriptomic responses of the Pseudomonas sp. exposed to 60 mg/L of Hg2+. We de novo assembled 4,963 contigs, of which 10,533 up-regulated genes and 5,451 down-regulated genes were found to be regulated by Hg. The 40 genes most altered in expression levels were associated with tolerance to Hg stress and metabolism. Functional analysis showed that some Hg-tolerant genes were related to the mer operon, sulfate uptake and assimilation, the enzymatic antioxidant system, the HSP gene family, chaperones, and metal transporters. The transcriptome were analyzed further with Gene Ontology (GO) and Cluster of Orthologous Groups (COGs) of proteins and showed diverse biological functions and metabolic pathways under Hg stress.

Glucose transport 1 deficiency presenting as infantile spasms with a mutation identified in exon 9 of SLC2A1

  • Lee, Hyun Hee;Hur, Yun Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.29-31
    • /
    • 2016
  • Glucose transport 1 (GLUT-1) deficiency is a rare syndrome caused by mutations in the glucose transporter 1 gene (SLC2A1) and is characterized by early-onset intractable epilepsy, delayed development, and movement disorder. De novo mutations and several hot spots in N34, G91, R126, R153, and R333 of exons 2, 3, 4, and 8 of SLC2A1 are associated with this condition. Seizures, one of the main clinical features of GLUT-1 deficiency, usually develop during infancy. Most patients experience brief and subtle myoclonic jerk and focal seizures that evolve into a mixture of different types of seizures, such as generalized tonic-clonic, absence, myoclonic, and complex partial seizures. Here, we describe the case of a patient with GLUT-1 deficiency who developed infantile spasms and showed delayed development at 6 months of age. She had intractable epilepsy despite receiving aggressive antiepileptic drug therapy, and underwent a metabolic workup. Cerebrospinal fluid (CSF) examination showed CSF-glucose-to-blood-glucose ratio of 0.38, with a normal lactate level. Bidirectional sequencing of SLC2A1 identified a missense mutation (c.1198C>T) at codon 400 (p.Arg400Cys) of exon 9.

Reflections on the US FDA's Warning on Direct-to-Consumer Genetic Testing

  • Yim, Seon-Hee;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.151-155
    • /
    • 2014
  • In November 2013, the US Food and Drug Administration (FDA) sent a warning letter to 23andMe, Inc. and ordered the company to discontinue marketing of the 23andMe Personal Genome Service (PGS) until it receives FDA marketing authorization for the device. The FDA considers the PGS as an unclassified medical device, which requires premarket approval or de novo classification. Opponents of the FDA's action expressed their concerns, saying that the FDA is overcautious and paternalistic, which violates consumers' rights and might stifle the consumer genomics field itself, and insisted that the agency should not restrict direct-to-consumer (DTC) genomic testing without empirical evidence of harm. Proponents support the agency's action as protection of consumers from potentially invalid and almost useless information. This action was also significant, since it reflected the FDA's attitude towards medical application of next-generation sequencing techniques. In this review, we followed up on the FDA-23andMe incident and evaluated the problems and prospects for DTC genetic testing.

De novo assembly of a large volume of genome using NGS data (NGS 데이터를 이용한 대용량 게놈의 디노버 어셈블리)

  • Won, Jung-Im;Hong, Sang-Kyoon;Kong, Jin-Hwa;Huh, Sun;Yoon, Jee-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.25-27
    • /
    • 2012
  • 디노버 어셈블리는 레퍼런스 시퀀스 없이 리드의 염기 서열 정보를 이용하여 원래의 전체 시퀀스(original sequence)로 추정되는 시퀀스로 리드들을 재구성하는 방식이다. 최근의 NGS(Next Generation Sequencing) 기술은 대용량 리드를 훨씬 쉽게 저비용으로 생성할 수 있다는 장점이 있어, 이를 이용한 많은 연구가 이루어지고 있다. 그러나 NGS 리드 데이터를 이용한 디노버 어셈블리에 관한 연구는 국내외적으로 매우 미흡한 실정이다. 그 이유는 NGS 리드 데이터를 이용하여 디노버 어셈블리를 수행하는 경우 대용량 데이터, 복잡한 데이터 구조 및 처리 과정 등으로 인하여 매우 많은 시간과 공간이 소요될 뿐만 아니라 아직까지 다양한 분석 툴과 노하우 등이 충분히 개발되어 있지 않기 때문이다. 본 연구에서는 NGS 리드 데이터를 이용한 어셈블리의 실효성과 정확성을 검증한다. 또한 디노버 어셈블리의 처리 시간 및 공간 오버헤드를 해결하기 위하여 유사 종과의 리드 정렬을 활용하는 방안을 제안한다.

A novel de novo mosaic mutation in PHEX in a Korean patient with hypophosphatemic rickets

  • Yang, Misun;Kim, Jinsup;Yang, Aram;Jang, Jahyun;Jeon, Tae Yeon;Cho, Sung Yoon;Jin, Dong-Kyu
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.229-234
    • /
    • 2018
  • X-linked hypophosphatemic rickets is caused by loss-of-function mutations in PHEX, which encodes a phosphate-regulating endopeptidase homolog. We report a 26-year-old man with X-linked hypophosphatemic rickets who showed decreased serum phosphate accompanied by bilateral genu valgum and short stature. He had received medical treatment with vitamin D (alfacalcidol) and phosphate from the age of 3 to 20 years. He underwent surgery due to valgus deformity at the age of 14 and 15. Targeted gene panel sequencing for Mendelian genes identified a nonsense mutation in PHEX (c.589C>T; p.Gln197Ter) and a mosaic pattern where only 38% of sequence reads showed the variant allele. This mutation was not found in his mother, who had a normal phenotype. This is a case of a sporadic nonsense mutation in PHEX and up to date, this is the first case of a mosaic mutation in PHEX in Korea.

Waardenburg Syndrome Type IV De Novo SOX10 Variant Causing Chronic Intestinal Pseudo-Obstruction

  • Hogan, Anthony R.;Rao, Krishnamurti A.;Thorson, Willa L.;Neville, Holly L.;Sola, Juan E.;Perez, Eduardo A.
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.5
    • /
    • pp.487-492
    • /
    • 2019
  • Waardenburg syndrome (WS) type IV is characterized by pigmentary abnormalities, deafness and Hirschsprung's disease. This syndrome can be triggered by dysregulation of the SOX10 gene, which belongs to the SOX (SRY-related high-mobility group-box) family of genes. We discuss the first known case of a SOX10 frameshift mutation variant defined as c.895delC causing WS type IV without Hirschsprung's disease. This female patient of unrelated Kuwaiti parents, who tested negative for cystic fibrosis and Hirschsprung's disease, was born with meconium ileus and malrotation and had multiple surgical complications likely due to chronic intestinal pseudo-obstruction. These complications included small intestinal necrosis requiring resection, development of a spontaneous fistula between the duodenum and jejunum after being left in discontinuity, and short gut syndrome. This case and previously reported cases demonstrate that SOX10 gene sequencing is a consideration in WS patients without aganglionosis but with intestinal dysfunction.

Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy

  • Zhang, Yinhua;Lee, Yeunkum;Han, Kihoon
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.304-311
    • /
    • 2019
  • The cytoplasmic FMR1-interacting protein family (CYFIP1 and CYFIP2) are evolutionarily conserved proteins originally identified as binding partners of the fragile X mental retardation protein (FMRP), a messenger RNA (mRNA)-binding protein whose loss causes the fragile X syndrome. Moreover, CYFIP is a key component of the heteropentameric WAVE regulatory complex (WRC), a critical regulator of neuronal actin dynamics. Therefore, CYFIP may play key roles in regulating both mRNA translation and actin polymerization, which are critically involved in proper neuronal development and function. Nevertheless, compared to CYFIP1, neuronal function and dysfunction of CYFIP2 remain largely unknown, possibly due to the relatively less well established association between CYFIP2 and brain disorders. Despite high amino acid sequence homology between CYFIP1 and CYFIP2, several in vitro and animal model studies have suggested that CYFIP2 has some unique neuronal functions distinct from those of CYFIP1. Furthermore, recent whole-exome sequencing studies identified de novo hot spot variants of CYFIP2 in patients with early infantile epileptic encephalopathy (EIEE), clearly implicating CYFIP2 dysfunction in neurological disorders. In this review, we highlight these recent investigations into the neuronal function and dysfunction of CYFIP2, and also discuss several key questions remaining about this intriguing neuronal protein.

Hypotonia, Ataxia, and Delayed Development Syndrome caused by the EBF3 mutation in a Korean boy with muscle hypotonia

  • Kim, Tae-Gyeong;Choi, Yoon-Ha;Lee, Ye-Na;Kang, Min-Ji;Seo, Go Hun;Lee, Beom Hee
    • Journal of Genetic Medicine
    • /
    • v.17 no.2
    • /
    • pp.92-96
    • /
    • 2020
  • Hypotonia, Ataxia, and Delayed Development Syndrome (HADDS) is an autosomal-dominant, extremely rare neurodevelopmental disorder caused by the heterozygous EBF3 gene mutation. EBF3 is located on chromosome 10q26.3 and acts as a transcription factor that regulates neurogenesis and differentiation. This syndrome is characterized by dysmorphism, cerebellar hypoplasia, urogenital anomaly, hypotonia, ataxia, intellectual deficit, and speech delay. The current report describes a 3-year-old Korean male carrying a de novo EBF3 mutation, c.589A>G (p.Asn197Asp), which was identified by whole exome sequencing. He manifested facial dysmorphism, hypotonia, strabismus, vermis hypoplasia, and urogenital anomalies, including vesicoureteral reflux, cryptorchidism, and areflexic bladder. This is the first report of a case of HADDS cause by an EBF3 mutation in the Korean population.

Variant of CHD1 gene resulting in a Korean case of Pilarowski-Bjornsson syndrome

  • Yoon Sunwoo;Soo Hyun Seo;Ho-Joong Kim;Moon Seok Park;Anna Cho
    • Journal of Genetic Medicine
    • /
    • v.19 no.2
    • /
    • pp.111-114
    • /
    • 2022
  • Many monogenic neurodevelopmental disorders have been newly identified in recent years owing to the rapid development of genetic sequencing technology. These include variants of the epigenetic machinery - up to 300 known epigenetic factors of which about 50 have been linked to specific clinical phenotypes. Chromodomain, helicase, DNA binding 1 (CHD1) is an ATP-dependent chromatin remodeler, known to be the causative gene of the autosomal dominant neurodevelopmental disorder Pilarowski-Bjornsson syndrome. Patients exhibit various degrees of global developmental delay, autism, speech apraxia, seizures, growth retardation, and craniofacial dysmorphism. We report the first case of Pilarowski-Bjornsson syndrome in Korea, due to a de novo missense variant of the CHD1 gene (c.862A>G, p.Thr288Ala) in a previously undiagnosed 17-year-old male. His infantile onset of severe global developmental delay, intellectual disability, speech apraxia, and failure to thrive are compatible with Pilarowski-Bjornsson syndrome. We also noted some features not previously reported in this syndrome such as skeletal dysplasia and ichthyosis. Further studies are needed to discover the specific phenotypes and pathogenic mechanisms behind this rare disorder.

Complete genome sequence of Treponema pedis GNW45 isolated from dairy cattle with active bovine digital dermatitis in Korea

  • Hector Espiritu;Lovelia Mamuad;Edeneil Jerome Valete;Sang-Suk Lee;Yong-Il Cho
    • Journal of Animal Science and Technology
    • /
    • v.66 no.5
    • /
    • pp.1079-1082
    • /
    • 2024
  • Treponema pedis, a fastidious anaerobic spirochete, is one of the main pathogens involved in the development and progression of bovine digital dermatitis (BDD), a lameness-causing hoof infection in cattle. Here, the complete genome sequencing of T. pedis GNW45 isolated from a dairy cow infected with BDD, was presented. Libraries for long and short reads were sequenced using PacBioRSII and Illimuna HiSeqXTen platforms, respectively. De-novo assembly was done using the long reads, producing a circular contig, by which the short reads were aligned to generate a more accurate genome sequence. The genome has a total size of 3,077,465 base pairs, with 36.84% guanine-cytosine content. A total of 2,749 protein-coding sequences, seven ribosomal RNA's, and 45 transfer RNA's were annotated. Functional analysis revealed genes associated with pathogenicity and survivability in the complex pathobiome of BDD. This study provided novel insights into the survival and pathogenic mechanisms of T. pedis GNW45.