• 제목/요약/키워드: dc loads

검색결과 255건 처리시간 0.033초

고성능 히스테리 제어를 이용한 고전압 DC 전력시스템을 위한 Voltage Bus Conditioner (A Voltage Bus Conditioner for a High Voltage DC Power Distribution System using High Performance Hysteresis Control)

  • 나재두
    • 전기학회논문지P
    • /
    • 제56권2호
    • /
    • pp.90-98
    • /
    • 2007
  • More and All-Electric Aircraft (AEA) carry many loads with varied functions. In particular, there may be large pulsed loads with short duty ratio, which can affect the normal operation of other loads. In this paper, a bi-directional converter with inductive storage is used as a voltage bus conditioner (VBC) to mitigate voltage transients on the bus. In addition, the constant frequency hysteresis control technique for a VBC is presented. A simple and fast prediction of the hysteresis band-width is implemented by the phase-lock loop control, keeping constant switching frequency. This technique offers the excellent dynamic response in load or parameter variation. The control performance is illustrated by simulated results with the SABER package, The proposed hysteresis control results in the shortest and the smallest excursions.

A Novel Solid State Controller for Parallel Operated Isolated Asynchronous Generators in Pico Hydro Systems

  • Singh, Bhim;Kasal, Gaurav Kumar
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.358-365
    • /
    • 2007
  • This paper deals with a novel solid state controller (NSSC) for parallel operated isolated asynchronous generators (IAG) feeding 3-phase 4-wire loads in constant power applications, such as uncontrolled pico hydro turbines. AC capacitor banks are used to meet the reactive power requirement of asynchronous generators. The proposed NSSC is realized using a set of IGBTs (Insulated gate bipolar junction transistors) based current controlled 4-leg voltage source converter (CC-VSC) and a DC chopper at its DC bus, which keeps the generated voltage and frequency constant in spite of changes in consumer loads. The complete system is modeled in MATLAB along with simulink and PSB (power system block set) toolboxes. The simulated results are presented to demonstrate the capability of isolated generating system consisting of NSSC and parallel operated asynchronous generators driven by uncontrolled pico hydro turbines and feeding 3-phase 4-wire loads.

H-Bridge VSC with a T-Connected Transformer for a 3-Phase 4- Wire Voltage and Frequency Controller of an Isolated Asynchronous Generator

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.43-50
    • /
    • 2009
  • This paper deals with a novel solid state controller (NSSC) for an isolated asynchronous generator (IAG) feeding 3-phase 4-wire loads driven by constant power prime movers, such as uncontrolled pico hydro turbines. AC capacitor banks are used to meet the reactive power requirement of the asynchronous generator. The proposed NSSC is realized using a set of IGBTs (Insulated gate bipolar junction transistors) based current controlled 2-leg voltage source converters (CC- VSC) and a DC chopper at its DC bus, which keeps the generated voltage and frequency constant in spite of changes in consumer loads. The neutral point of the load is created using aT-configuration of the transformers. The IAG system is modeled in MATLAB along with Simulink and PSB (power system block set) toolboxes. The simulated results are presented to demonstrate the capability of the isolated generating system consisting of NSSC and IAG driven by uncontrolled pico hydro turbine and feeding 3-phase 4-wire loads.

PR 제어기를 이용한 3상 4선식 인버터 Neutral Leg 제어 방법 (Control of the Neutral Leg in Three-Phase Four-Wire Inverter Using Proportional-Resonant Controller)

  • 한정호;송중호
    • 조명전기설비학회논문지
    • /
    • 제29권2호
    • /
    • pp.54-61
    • /
    • 2015
  • In 3-phase 4-wire inverter, the unbalanced loads cause to increase the neutral current which brings the voltage deviation between the split dc-link capacitors to be larger. In order to solve this problem, a neutral leg is provided additively to the ordinary inverter circuit and the associated control methods are devised. This paper proposes a new neutral-leg controller based on a PR controller and shows relatively good performance even under unbalanced linear loads and nonlinear loads. The proposed control strategy illustrates its effectiveness under the various operating conditions through simulation works.

Load and Capacitor Stacking Topologies for DC-DC Step Down Conversion

  • Mace, Jules;Noh, Gwangyol;Jeon, Yongjin;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1449-1457
    • /
    • 2019
  • This paper presents two voltage domain stacking topologies for powering integrated digital loads such as multiprocessors or 3D integrated circuits. Pairs of loads and capacitors are connected in series to form a stack of voltage domains. The voltage is balanced by switching the position of the capacitors in one case and the position of the loads in the other case. This method makes the voltage regulation robust to large differential load power consumption. The first configuration can be named the load stacking topology. The second configuration can be named the capacitor stacking topology. This paper aims at proposing and comparing these two topologies. Models of both topologies and a switching scheme are presented. The behavior, control scheme, losses and overall performance are analyzed and compared theoretically in simulation and experiments. Experimental results show that the capacitor stacking topology has better performance with a 30% voltage ripple reduction.

ZVT 기술을 이용한 soft switching DC-DC Boost 컨버터에 관한 연구 (A Study on Soft Switching PWM Boost Converter using ZVT Technique)

  • 김춘삼
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.141-144
    • /
    • 2000
  • Recently DC-DC converters significantly increase the total losses as rising switching frequency. Traditional soft switching technique for reducing switching losses even increase voltage/current stress of switch. In this paper Resonant circuit for soft switching is connected in parallel with power stage and only operates just before turn-on of the main operates just before turn-on of the main switch, Therefore This doesn't affect the total circuit operation. ZNT-PWM converter designed with 170-260V input 4--V 5A output and 100kHz switching frequency is tested respectively with 500W. 1kW, 1.5kW, and 2kW loads.

  • PDF

전력변환기 병렬운전을 위한 펄스폭 정보를 이용한 새로운 통신방식 (New Communication Method using Pulse Width Information for Power Converter Parallel Operation )

  • 김동환;최성철;레동부;박성준;박성미
    • 한국산업융합학회 논문집
    • /
    • 제26권6_2호
    • /
    • pp.1097-1108
    • /
    • 2023
  • Recently, demand for technology for energy economy and stable supply is increasing due to the increase in power demand of loads. The amount of DC power generation using new and renewable energy is noticeably increasing, and the use of DC power supplies is also increasing due to the increase in electric vehicles and digital loads. During parallel operation to increase the capacity of the power converter, the module bus method or the method using Can communication and serial communication has significant difficulties in smooth operation due to communication time delay for information sharing. Synchronization of information sharing of each power converter is essential for smooth parallel operation, and minimization of communication time delay is urgently needed as a way to overcome this problem. In this paper, a new communication method using pulse width information is proposed as a communication method specialized for parallel operation of power converters to compensate for the disadvantage of communication transmission delay in the existing system. The proposed communication method has the advantage of being easily implemented using the PWM and Capture function of the microcomputer. In addition, the DC/DC converter for DC distribution was verified through simulation and experiment, and it has the advantage of easy capacity expansion when applied to parallel operation of various types of power converters as well as DC/DC converters.

Analog Controller for Battery to Stabilize DC-bus Voltage of DC-AC Microgrid

  • Dam, Duy-Hung;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 추계학술대회 논문집
    • /
    • pp.66-67
    • /
    • 2014
  • Stabilization of the DC bus voltage is an important task in DC-AC microgrid system with renewable energy source such as solar system. A battery energy storage system (BESS) has become a general solution to stabilize the DC-bus voltage in DC-AC microgrid. This paper develops the analog BESS controller which requires neither computation nor dc-bus voltage measurement, so that the system can be implemented simply and easily. Even though others methods can stabilize and control the DC-bus voltage, it has complicated structure in control and low adaptive capability. The proposed topology is simple but is able to compensate the solar source variation and stabilize the DC-bus voltage under any loads and distributed generation (DG) conditions. In addition, the design of analog controller is presented to obtain a robust system. In order to verify the effectiveness of the proposed control strategy, simulation is carried out by using PSIM software.

  • PDF

부하변동을 고려한 DC/DC 승압형 컨버터의 외란 관측기 기반 출력 궤환 제어기 (A Disturbance Observer-Based Output Feedback Controller for a DC/DC Boost Converter with Load Variation)

  • 정구종;김인혁;손영익
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1405-1410
    • /
    • 2009
  • Output voltage of a DC/DC power converter system is likely to be distorted if variable loads exist in the output terminal. This paper presents a new disturbance observer(DOB) approach to maintain a robust regulation of the output voltage of a boost type DC/DC converter. Unlike the buck-type converter case, the regulation problem of the boost converter is very complicated by the fact that, with respect to the output voltage to be regulated, the system is non-minimum phase. Owing to the non-minimum phase property the classical DOB approach has not been applied to the boost converter. Motivated by a recent result on the application of DOB to non-mimimum phase system, an output feedback control law is proposed by using a parallel feedforward compensator. Simulation results using the Simulink SimPowerSystems prove the performance of the proposed controller against load variation.

한국형 다중추진시스템의 주전력변환기 설계 (AC/DC Converter Design of The Korean Type Multi-Propulsion System)

  • 조정민;정병수;조흥제;김수용;성호경
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권3호
    • /
    • pp.127-133
    • /
    • 2005
  • Korean multi-propulsion system consists of a synchronous alternator driven by a gas turbine driving synchronous alternator coupled to a rectifier - DC link - DC/DC converter and traction system based on modification of the G7 high-speed train. The simulation modules include turbine engine system, alternator, rectifier, DC/DC converter and power management module. Simulation for the multi-propulsion system such as a modular is presented in order to confirm the system stability for loads with uncertain input impedances and control loop speeds. This paper deals with various simulation modules with a specific control loop to help the development of the real lame-scaled system.