• Title/Summary/Keyword: days to emergence

Search Result 598, Processing Time 0.032 seconds

Changes of Physico-chemical Properties during the Leaf Development and Senescence of Tobacco Plant (담배의 엽 발달 및 노화과정 중 이화학성 변화)

  • 이상각;장병화;석영선;배길관;노재영
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.2
    • /
    • pp.138-144
    • /
    • 1996
  • This experiment was conducted to obtain the basic information on the morphological and physiological changes in tobacco leaf during the growth period by measuring the changes of chlorophyll, sugar, lipid and mineral contents in tobacco plant. Leaf length and width have been fully developed at 25 days after leaf emergence. Dry weight was rapidly increased between 10 and 15 days after leaf emergence and reached the highest at 30 days. Crude lipid content, palmitic acid, and the major saturated fatty acid were increased with progressing senescence, while unsaturated fatty acid including linolenic acid was decreased as the senescence was advanced. The total nitrogen content showed the highest value at IS days after leaf emergence. On the other hand, the total sugar content showed the highest value at 45 days after leaf emergence and glucose, fructose and sucrose were decreased with leaf development and increased at the end of senescence. The content of chlorophyll showed the highest value at 15 days after leaf emergence and began to decrease at 30 days after leaf emergence. The contents of p, Cu, Zn, and Fe in tobacco leaves were decreased by the end of senescence after leaf emergence but those of Ca, Mg, and Mn in leaves were increased. Key words : Nicotiana tabacum chlorophyll, fatty acid, senescence.

  • PDF

Biochemical Changes of Protein during the Senescence of Tobacco Leaf (담배잎의 노화과정에 따른 단백질의 생화학적 변화)

  • 이상각;심상인;강병화
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.5
    • /
    • pp.563-568
    • /
    • 1996
  • This experiment was conducted to obtain basic information of biochemical changes in the process of senescence by measuring the total RNA, protein, protease activity and electrophoretic pattern of protein in tobacco plant. The content of soluble protein increased by 15 days after leaf emergence and its level was not changed from 15 to 35 days after leaf emergence. The content of total RNA showed a maximum value at 15 days after leaf emergence and then decreased rapidly until 30 days after leaf emergence. The activity of protease of neutral fraction was higher than that of acidic fraction and rapidly increased up to the end of senescence after 50 days after leaf emergence. According to the analysis of electrophoresis, polypeptide band of 61kd was developed after 35 days after leaf emergence and increased by the end of senescence.

  • PDF

Changes in Photosynthetic Rate and Protein Content in the Leaf during the Senescence of Tobacco Plant (Nicotiana tabacum L) (담배의 노화과정 중 광합성 및 단백질 함량의 변화)

  • Lee, Sang-Gak;Shim, Sang-In;Kang, Byeung-Hoa
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.17 no.1
    • /
    • pp.20-26
    • /
    • 1995
  • This study was carried out to obtain the basic data which include the change of the photosynthetic rate and protein content according to growth stage in the process of senescence of tobacco plant The photosynthetic rate was the maximum with 26.31$\mu$mol.CO2/m2.sec and stomatal resistance was the minimum with 0.2552cm/sec at 15th days after leaf emergence. However, after 50 days the photosynthesis was very little occurred. During leaf developments the number of chloroplast was increased and reached at the maximum at 25th days after emergence of leaf, thereafter, it was decreased gradually. The content of protein increased continuously and showed the highest value at 15th days after leaf emergence. The degradation rate of soluble protein was more rapid than that of insoluble protein at early stage of senescence. The range of decrement in the insoluble protein was low at late stage of senescence. The content of Rubisco, the key enzyme of photoamthesis, corresponded to about 50% of soluble protein and reached to the maximum at 150 days after leaf emergence. As the senescence progressed, the content of large subunit(UV) of Rubisco showed a tendency to decrease more rapidly than that of small subunit(SSU). The total amount of amino acids was the highest at 15th days after leaf emergence.

  • PDF

The Effects of Transplanting Time and Meteorological Change to Variation of Phyllochron of Rice

  • Ku, Bon-Il;Choi, Min-Kyu;Kang, Shin-Ku;Lee, Kyung-Bo;Park, Hong-Kyu;Park, Tae-Seon;Ko, Jae-Kwon;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.259-267
    • /
    • 2010
  • This study was performed at Rice and Winter Cereal Crops Department of NICS during 2007 and 2008 to investigate the characteristics of rice leaf emergence and to obtain basic data which can be used for rice growth simulation model by which we can forecast rice growth stage and heading date accurately under different cultivars, transplanting date, and climatic conditions. To confirm leaf emergence rate according to rice maturing ecotype, we surveyed the leaf emergence rate and heading date of Unkwangbyeo, Hwayoungbyeo and Nampyeongbyeo which are early maturing, medium maturing and medium-late maturing cultivars, respectively, according to seedling raising duration and transplanting time. When seedling duration was 15 days, the growth duration between transplanting time and completion of flag leaf emergence on main culm were 51.5~78.3 days in Unkwangbyeo, 55.3~87.9 days in Hwayoungbyeo and 58.4~98.4 days in Nampyeongbyeo, respectively. When seedling duration was 30 days, they were 50.1~75.5 days in Unkwangbyeo, 52.4~84.7 days in Hwayoungbyeo and 56.4~93.8 days in Nampyeongbyeo, respectively. As transplanting time delayed, the emerged leaf number after transplanting decreased in all rice cultivars. The cumulative temperature between transplanting time to completion of flag leaf elongation on main culm were $1,281^{\circ}C{\sim}1,650^{\circ}C$ in Unkwangbyeo, $1,344^{\circ}C{\sim}1,891^{\circ}C$ in Hwayoungbyeo and $1,454^{\circ}C{\sim}2,173^{\circ}C$ in Nampyeongbyeo, respectively. Leaf emergence rate on main culm were precisely represented by equation, y = $y_0$ + a / [1 + exp( - (x - $x_0$) / b)]^c, when we used daily mean temperature as variable.

ROOT CHILLING DORMANCY REQUIREMENTS FOR AMERICAN GINSENG (PANAX QUINQUEFOLIUM L) (미국 인삼근의 저온 휴면 요구도)

  • Konsler T.R.
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.49-55
    • /
    • 1984
  • Dormant one-year-old ginseng roots were subjected to a range of stratification temperatures and time to define effective limits to these parameters and to quantify their effect on terminating dormancy. Effective storage temperatures tested ranged from $0^{\circ}C\;to\;9^{\circ}C.$ A low percentage of roots produced tops with as few as 30 days in stratification; however, 75 to 90 days were required for 100 percent emergence. Days to emergence, after planting, decreased with increased days in storage thru the maximum storage time of 120 days. The number of days of dormancy was relatively constant, near 126.5 days, over the range of effective temperatures and acceptable storage times. The minimum period of dormancy was associated with 75 days in storage at $3^{\circ}C.$ Root growth rate, after emergence, was greatest following 105 days of stratification. The frequency distribution of emergence with days in stratification suggests the potential of selecting for strains of ginseng with low chilling needs for satisfying dormancy requirements.

  • PDF

Effect of carbon dioxide of root zone on emergence and early growth of transplanted ginseng (근권(根圈)의 CO2 농도(濃度)가 묘삼(苗蔘)의 출아(出芽) 및 초기생육(初期生育)에 미치는 영향(影響))

  • Park, Hoon;Lee, Myong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.2
    • /
    • pp.127-130
    • /
    • 1989
  • Ginseng seedlings were transplanted in the perlite and grown with various $CO_2$ concentration for 14 days. The days for full emergence was decreased by 3 days at 6 to 8% $CO_2$ but increased above 13%. Stem length showed significant negative linear correlation with $CO_2$ concentration at 14 days but little difference at 64 days. Relative growth (%) to seedling at 64 days tended to increased till 8% $CO_2$ and decrease thereafter without significance. Seedlings showed 65% emergence with short stem (60%) under 22% $CO_2$ for 64 days. Seedlings were all sleeping under 35% $CO_2$ for 64 days. Above results indicates that $CO_2$ may be useful for growth control or post harvest storage of ginseng.

  • PDF

Effects of processed tobacco leaves for the development and emergence of cigarette beetle (담배 가공 원료엽의 궐련벌레 생육과 우화에 미치는 영향)

  • Chae, Soon-Yong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This study was conducted to determine the effects of processed tobacco leaves on the development, adult emergence and body weight of the cigarette beetle, Lasioderma serricorne Fabricius) (Coleoptera: Anobiidae) is serious insect pest of tobacco leaves and cigarette during storage. Developmental time, adult emergence rate and adult weight of the cigarette beetle, were evaluated on the cured tobacco and burley tobacco leaves at $30{\pm}1^{\circ}C$ with $70{\pm}5$ % RH under 12L:12D. The developmental time on all of the flue-cured tobacco leaves was about 61 days, but in the only CD3W and CD4TR grade burley tobacco, the developmental times ranged from 70 days to 74 days. Among the flue-cured tobacco leaves, the highest beetle emergence rate was 123 % on the CD3L grade, and the lowest was on the AB4OR grade. Adult body weights of the cigarette beetle reared on flue-cured tobacco were about 2.11~2.46 mg, and on the only CD3W and CD4TR grade burley tobacco were about 1.86~1.96 mg. Among the flue-cured tobacco leaves, the highest adult body weight(2.46 mg) of cigarette beetle was observed on the B1O grade flue-cured tobacco, whereas the lowest adult weight(2.11 mg) was observed on the CD4L grade flue-cured tobacco. The adult weight of cigarette beetle reared on whole meal was 2.04mg.

Maternal Influence on Spiderlings' Emergence from the Cocoon: Observations in a Subsocial Spider

  • Kim, Kil-Won
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • Brood caring behavior was observed in Amaurobius ferox (Araneae, Amaurobiidae), a semelparous subsocial spider, from cocoon construction until the emergence of spiderlings from the cocoon. Unlike most spiders, which emerge from cocoon by their own means, A. ferox mothers intervene in the process of the emergence of their young. I manipulated broods by removing the mother prior to emergence to determine the effects of maternal behavior on the emergence of spiderlings. My results showed that maternal intervention making the cocoon expansion and its exit, is not absolutely necessary for the emergence of A. ferox spiderlings from the cocoon. Nine clutches out of ten were able to get out of the cocoon by their own means without their mother's help. There was no difference between control groups ('with mother') and experimental groups ('without mother') in the number of spiderlings that emerged ($96.9{\pm}25.3$ vs. $90.4{\pm}14.2$, respectfully) and in the time from the beginning to the end of emergence ($36{\pm}12$ vs. $41{\pm}17$ hours). Time from eclosion until the emergence of the first individual in a clutch, however, was greater in the mother-absent group (3.5 days) than in the control group (2.0 days). The construction of the cocoon by the mother required always occurred in the same area within the retreat, and took approximately 6 hours, and the mother guarded the eggs during the incubation period. The emergence of the spiderlings followed a sigmoidal pattern. After emergence, the spiderlings formed a very compact group on the cocoon, which may be important in securing maternal care. The absence of cribellum and calamistrum, structures likely involved in their survival, observed in individuals of the first instar suggests that in the first stage of life, the spiderlings are dependent on their mother.

Effects of Delayed Pollination on Kernel Development in Corn

  • Lee, Myoung-Hoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.1
    • /
    • pp.15-18
    • /
    • 1998
  • Receptivity of corn silk to pollen decreases with time. For effective pollination, it is important to study the receptivity of corn silks in relation to time elapsed after their emergence. Two commercial corn hybrids, 'Kwanganog' and 'Suwon 19', were tested for their silk growth and effects of delayed pollination on kernel development for 1 to 13 days after emergence of the first silk. Silks elongated rapidly for the first 3 days and then gradually decreased. Silks grew more than 30mm per day for the first 3 days and stopped growing on the 11 or 12th day after emergence of the first silk. Filled ear length decreased slowly for the first 8 days, and then decreased rapidly. Similar trends were observed for number of kernel rows and number of kernels per row or ear. The highest numbers of kernels per row or ear were observed when plants were pollinated 2-4 days after silking. These numbers decreased gradually up to 8 days, and then decreased sharply. This result indicates that 8 day-delayed pollination has no influence on kernel development. There were negative correlations between silk length and ear characteristics except kernel weight. Silk growth rate was positively correlated with filled ear length, row number, and kernel number. It might be assumed that delayed pollination by one week after the first silk emerged would not affect on kernel set.

  • PDF

The effects of cold treatment on the pupal period, emergence rate, and number of Protaetia brevitarsis larvae spawned

  • JANG, Heeseung;CHOI, Moon Bo;LEE, Hyoki;KIM, Yeongbu;KWON, Ohseok
    • Entomological Research
    • /
    • v.48 no.6
    • /
    • pp.550-558
    • /
    • 2018
  • To develop a system for the mass production of Protaetia brevitarsislarvae (Pbl), this study analyzed the oviposition characteristics of third instar Pbl through successive rearing and cold treatments. In the first generation, females laid 50 eggs each on average, and spawned higher numbers of eggs for the first 5 days but then fewer after this. However, all of the $2^{nd}$-generation females that were produced through the successive rearing of eggs from the $1^{st}$ generation did not spawn. When test insects (TI) were raised at $32^{\circ}C$, their $mean{\pm}SE$ pupal period and emergence rate were $28.4{\pm}1.9$ days and 87%, respectively. However, most individuals raised in cold treatments ($5^{\circ}C$ and $-5^{\circ}C$) without a pre-cooling period did not survive. Individuals exposed to a pre-cooling period, however, had a 7-10 days longer pupal period than those raised at $32^{\circ}C$, and their emergence rate (90%) was slightly higher. Different cold treatment temperatures ($0^{\circ}C$, $3^{\circ}C$, or $5^{\circ}C$) and periods (30 or 60 days) were tested in further experiments. The experimental group kept for 30 days at $0^{\circ}C$ and $3^{\circ}C$ had the shortest pupal period of all, and emergence rates exceeded 90% in most groups. With respect to the number of eggs spawned by the second generation females after cold treatments, the experimental groups held in cold treatments at $5^{\circ}C$ for 30 and 60 days were found to spawn the most eggs. Consequently, the experimental group kept at $5^{\circ}C$ for 30 days was the most effective set of conditions tested during the entire breeding period.