• 제목/요약/키워드: daylight prediction model

검색결과 8건 처리시간 0.019초

Comparison of Measured and Predicted Daylight Illuminances in Two Underground Spaces

  • Kim, Kang Soo;Paek, Seung Yeob;Kim, Han Seong
    • Architectural research
    • /
    • 제4권1호
    • /
    • pp.17-23
    • /
    • 2002
  • Daylight simulation methods play an important role for the prediction of daylight illuminances in underground spaces. This daylighting project is designed to compare daylight prediction methods for the application of large underground spaces. In this study, actual measurements were conducted under overcast and clear sky conditions. Also, computer simulations by Radiance, Superlite IEA 2.0 program and scale model testings were conducted to be compared with measured data. Simulation results show the data by Radiance, Superlite IEA 2.0 and the scale model are similar to the measured data in two underground spaces in Seoul. Overall results show that Radiance and superlite IEA 2.0 proved to be useful to predict daylight illuminances even in big underground spaces.

실내 주광조도 간이 예측식을 활용한 담천공 시의 자연 채광 성능 평가 (Application of Simplified Daylight Prediction Method for Daylighting Performance Evaluation on Overcast Sky)

  • 윤갑천;윤수인;김성식;김강수
    • 한국태양에너지학회 논문집
    • /
    • 제34권5호
    • /
    • pp.1-9
    • /
    • 2014
  • Daylight is very useful to control the indoor environment, and can save energy in buildings. So it is necessary to evaluate the daylighting performance of buildings. We proposed a simplified equation that can be used in the early stages of design. And we verified the equation by using the measured illuminance data from the 1/5 scale model. We compared the calculated indoor illuminances and measured illuminance including Daylight Factors of scale model in order to verify the applicability of the simplified equation, and proved the analyzed values are acceptable. When we have a target value of the Daylight Factor, we just have to determine the window area, transmittance of the glazing system, and indoor surface reflectance, then can achieve it with this simplified equation.

광파이프 시스템의 채광성능 예측모델의 검증 및 적용 (Evaluation and Application of Prediction Models for the Daylight Performance of a Light-Pipe System)

  • 윤근영;신주영;김정태
    • KIEAE Journal
    • /
    • 제10권1호
    • /
    • pp.65-72
    • /
    • 2010
  • The use of natural light has the potential for improving both the energy efficiency and indoor environmental quality in buildings. A light-pipe system can introduce daylight to spaces that would otherwise not be able to benefit from the advantages of daylight penetration. For the light-pipe system to be widely used in Korea, it is important to quantify its daylighting performance with due consideration regarding the effects imposed by the local climate conditions. This paper presents the evaluation results of existing semi-empirical models to predict daylighting performance of a light-pipe system. The evaluation of the existing models was based on the monitoring data obtained from a underground parking lot in which the light-pipe system was installed. Comparisons were made between the predicted and the monitored data obtained from the study. The results indicated that semi-empirical models which was developed using the experimental data obtained under the Korean climatic conditions had a good prediction performance. We also quantified the effects caused by sky conditions, solar altitudes, room dimensions, and the aspect ratio of a light-pipe system on both the daylighting performance of the light-pipe system and the indoor illuminance distributions of the space using the semi-empirical model. Finally, this paper provides the design guideline of the light-pipe system for its application to an underground parking lot space.

조광제어 시스템 적용시 실내조도의 변동예측을 위한 포토센서의 주광조도 분석 (Analyses on Photosensor Illuminance for Prediction of Fluctuating Illuminance by Daylight Dimming Control Systems)

  • 김수영
    • 설비공학논문집
    • /
    • 제22권11호
    • /
    • pp.788-797
    • /
    • 2010
  • This study examines the influence of fluctuating daylight illuminance on daylight dimming control systems. Field measurements were performed for a full-scale mocked-up model under various daylight conditions in winter. Fluctuating ranges for a partially-shielded photosensor were great when the variation of sky ratio was great. When solar altitude was lower the illuminance and fluctuating range of illuminance were great due to the influence of direct components of daylight and the interrefelction between surfaces in rear area of space. It implies that daylight dimming system would not function effectively, unless the desktop illuminance by daylight is enough. Fluctuation ranges of photosensor illuminance were lower than 50 lx under clear sky conditions, but they were greater than 100 lx under partly-cloudy sky conditions. It means that the fluctuation range of electric light output of lighting fixture would greater under the partly-cloudy conditions and cause potential visual annoyance to occupants. Outdoor vertical illuminance reaching the windows would be an effective factor that can be used to predict the fluctuation of photosensor signals for effective controls of daylight dimming system.

Revisiting Prediction Tools for Daylight Adequacy and Its Potential Improvement

  • Kim, Dong Hyun
    • KIEAE Journal
    • /
    • 제17권3호
    • /
    • pp.35-44
    • /
    • 2017
  • Purpose: This study questioned the efficiency of daylight factor as a daylight adequacy and investigated a method of how to complement its weakness by considering a direct sunlight component under a clear sky condition. Method: The Snowdon visitor centre cafe was chosen as a case study building and various techniques such as BRE formula, BRE sky protractor, Pilkington dot diagram and mock-upscale model under the artificial sky simulator were used to analyse and compare daylight factor values. An analysis of direct sunlight component under the clear sky condition was carried out by Climate Consultant 5.5, sun path diagram, and the artificial sky simulator. Result: The result of daylight factor analysis differed by the adopted techniques and it was also contradictory to the results on a direct sunlight penetration. The result not only showed the limitation of daylight factor as a metric but also suggested an improvement by combining it with direct sunlight analysis. The techniques used in this study had a merit of being applied in the early design stage and thus be beneficial to many design professions in order for early daylight performance analysis.

Atrium Builing의 자연채광특성에 관한 기초적 연구 (A Fundamental Study on the Daylighting Characters of Atrium Building)

  • 김회서;최인창;서정호
    • 태양에너지
    • /
    • 제12권3호
    • /
    • pp.21-27
    • /
    • 1992
  • 본 연구는 아트리움 빌딩에 대한 자연채광의 영향을 모델에 의해서 실험하였다. 이러한 방법에 의하여 아트리움 빌딩에서의 자연채광의 단계를 예측하는 방법은 여러 가지가 있으나, 그러나 지금까지는 선형아트리움 건물에서 실내자연채광의 다양한 영향을 예측하기에는 충분치 못하였다. 본 연구에서는 효율적인 방법의 제시를 위하여 선형아트리움의 자연채광에 대한 환경 평가를 위해 모형을 제작하고, 평가모델에서의 천공상태, 방위, 종횡비, 층의 변화를 주어 전부 80가지의 변화에 대한 모형측정을 하여, 층높이의 변화와 공간비를 사용하여 분석하였다.

  • PDF

CIE 표준 담천공과 청천공 모델의 천공 휘도분포 예측 방법에 관한 연구 (A Study on Prediction Method of Sky Luminance Distributions for CIE Overcast Sky and CIE Clear Sky)

  • 김철호;김강수
    • 한국태양에너지학회 논문집
    • /
    • 제36권3호
    • /
    • pp.33-43
    • /
    • 2016
  • Daylight is an important factor which influences building energy efficiency and visual comfort for occupants. It is important to predict precise sky luminance at the early stages of design to reduce light energy in the building. This study predicted sky luminance distributions of standard sky model(CIE overcast sky, CIE clear sky) that was provided from the CIE(Commission internationale de $l^{\prime}{\acute{e}}clairage$). Afterward, result of sky luminance was compared and verified with simulation value of Radiance program. From the CIE overcast sky, zenith and horizon ratio is about 3:1. From the CIE clear sky, luminance value gets most high value around the sun. On the other hand, luminance value is the lowest in the opposite direction of the sun when angle is $90^{\circ}$ between the sun and sky element. As a result of comparing the calculation results with Radiance program, sky luminance prediction error rate is 0.4~1.3% when it is CIE overcast sky. Also, sky luminance prediction error rate is 0.3~1.5% when it is CIE clear sky. When compared with the results of radiance simulation, it was evaluated as fairly accurate.

차량탑재 라이다 시스템을 활용한 수치모델 행성경계층고도 검증 (Verification of the Planetary Boundary Layer Height Calculated from the Numerical Model Using a Vehicle-Mounted Lidar System)

  • 박창근;남형구
    • 대한원격탐사학회지
    • /
    • 제36권5_1호
    • /
    • pp.793-806
    • /
    • 2020
  • 이 연구에서는 중규모 기상모델인 WRF의 행성경계층 모수화 방안에 따른 PBLH의 정확도를 평가하기 위해 PBL 모수화 방안 가운데 YSU(Yonsei University), MYJ(Mellor-Yamada-Janjic), ACM2(Asymmetric Convective Model), BouLac(Bougeault-Lacarrere) PBL 방안을 대상으로 사례 기간(2014년 6월 26일~30일)에 대해 수치 실험을 수행하였다. 이동형 차량탑재 라이다 시스템(LIVE)으로 생산된 후방산란 신호를 이용하여 산출한 PBLH와 WRF의 PBL 방안별 예측장에서 산출된 PBLH를 상호 비교 분석하였다. 대체적으로 비국지 방안을 사용한 실험이 국지 방안을 사용한 경우보다 라이다 관측에 대해 더 높은 상관도를 나타냈다. 낮 시간에 대한 PBLH 차이의 표준 편차는 YSU(≈0.39 km), BouLac(≈0.45 km), ACM2(≈0.47 km), MYJ(≈0.53 km) PBL 방안 순으로 작은 값을 보였다. 사례 기간에 대한 RMSE 비교에서는 YSU PBL 방안이 가장 높은 정밀도를 가지는 것으로 나타났다. 차량에 탑재된 기상라이다는 여러 기상 조건하에서 수치모델 행성경계층 분석을 위한 가이던스(guidance)를 제공할 수 있을 것으로 기대된다.