• Title/Summary/Keyword: day/night temperature

Search Result 310, Processing Time 0.035 seconds

Identification of Martian Cave Skylights Using the Temperature Change During Day and Night

  • Jung, Jongil;Yi, Yu;Kim, Eojin
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.141-144
    • /
    • 2014
  • Recently, cave candidates have been discovered on other planets besides the Earth, such as the Moon and Mars. When we go to other planets, caves could be possible human habitats providing natural protection from cosmic threats. In this study, seven cave candidates have been found on Pavonis Mons and Ascraeus Mons in Tharsis Montes on Mars. The cave candidates were selected using the images of the Context Camera (CTX) on the Mars Reconnaissance Orbiter (MRO). The Context Camera could provide images with the high resolution of 6 meter per pixel. The diameter of the candidates ranges from 50 to 100m. Cushing et al. (2007) have analyzed the temperature change at daytime and nighttime using the Thermal Emission Imaging System (THEMIS) for the sites of potential cave candidates. Similarly, we have examined the temperature change at daytime and at nighttime for seven cave candidates using the method of Cushing et al. (2007). Among those, only one candidate showed a distinct temperature change. However, we cannot verify a cave based on the temperature change only and further study is required for the improvement of this method to identify caves more clearly.

The Effect of Root Zone Cooling at Night on Substrate Temperature and Physiological Response of Paprika in Hot Climate (고온기 야간시간 근권냉방이 파프리카 배지온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Choi, Eun Young;Rhee, Han Cheol;Lee, Sung Eun;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • This study examined a technique for cooling root zone aimed at lowering substrate temperature for sweet pepper (Capsicum annum L. 'Orange glory') cultivation in coir substrate hydroponics during hot season, from the $16^{th}$ of July to $15^{th}$ of October in 2012. The root zone cooling technique was applied by using an air duct (${\varnothing}12$ cm, hole size 0.1 mm) to blow cool air between two slabs during night (5p.m. to 3a.m.). Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), average daily substrate temperature was $24.7^{\circ}C$ under the root zone cooling, whereas it was $28.2^{\circ}C$ under condition of no cooling (control). In sunny day (600~700 W $m^{-2}{\cdot}s^{-1}$), average substrate temperatures during the day (6a.m. to 8p.m.) and night (8p.m. to 6a.m.) were lower about $1.7^{\circ}C$ and $3.3^{\circ}C$, respectively, under the cooling treatment, compared to that of control. The degree of temperature reduction in the substrate was averagely $0.5^{\circ}C$ per hour under the cooling treatment during 6p.m. to 8p.m.; however, there was no decrease in the temperature under the control. The temperature difference between the cooling and control treatments was $1.3^{\circ}C$ and $0.6^{\circ}C$ in the upper and lower part of the slab, respectively. During the hot temperature period, about 32.5% reduction in the substrate temperature was observed under the cooling treatment, compared to the control. Photosynthesis, transpiration rate, and leaf water potential of plants grown under the cooling treatment were significantly higher than those under the control. The first flowering date in the cooling was faster about 4 days than in the control. Also, the number of fruits was significantly higher than that in the control. No differences in plant height, stem thickness, number of internode, and leaf width were found between the plants grown under the cooling and control, except for the leaf length with a shorter length under the cooling treatment. However, root zone cooling influenced negligibly on eliminating delay in fruiting caused by excessively higher air temperature (> $28^{\circ}C$), although the substrate temperature was reduced by $3^{\circ}C$ to $5.6^{\circ}C$. These results suggest that the technique of lowering substrate temperature by using air-duct blow needs to be incorporated into the lowering growing temperature system for growth and fruit set of health paprika.

A Fundamental Study of BIPV System Functioned as Solar Collector for Building Application (건물 적용을 위한 태양열 집열기 기능을 갖는 BIPV 시스템의 기초적 연구)

  • Min, Sung-Hye;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.91-98
    • /
    • 2007
  • Perimeter zone is one of the weakest area in buildings and it makes an increase of heating and cooling loads, in addition to condensation or discomfort with cold-draft to residents in winter. Because of this, it needs to be reinforced by active systems. However, they use fossil fuel, and ultimately greenhouse effect is urged. Thus, we proposed BIPV system functioned as solar collector which can substitute active system. As an fundamental stage, heat balance equation in steady-state by Fortran was used not only, in winter for pre-heating effect and electric power capacity during the day, but also in summer, for the latter during the day and sky radiation effect during the night. Especially, we should have considered shading on PV by IES Suncast, since even a little bit of it makes the efficiency too low for the PV modules to work. As a result, in summer day, the PV panel should be tiled in 70 degrees to gain the most electric power. Moreover, we could verify that this model makes higher temperature and heat flux under 0.02 m/s. On the other hand, the PV had the high efficiency with high velocity because of cooling effect behind the PV. Therefore, we should regard the air current distribution later on.

Response of Electrocardiogram of Nile tilapia, Oreochromis niloticus to Electric Stimulus (전기자재에 대한 역돔의 심전도)

  • 한규환;양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.4
    • /
    • pp.278-283
    • /
    • 2002
  • The response of electrocardiogram(ECG) of Nile tilapia, Oreochromis niloticus [Linnaeus] was studied to the electric stimulus which was given to a certain part of body The experiments were performed in such a way that three levels of electric stimulus (20, 30, 40 Vp ; 10 msec) were given to fishes with electrode inserted into their bodies and then their ECGs were recorded continuously for 60 minutes in the water temperature of 16~18$^{\circ}C$ The results of the experiments were divided by day and night, and then were analyzed by experimental conditions as follows; 1. Nile tilapia reached a stable condition within 3 minutes after the electrode inserted into their bodies during anesthesia. In stable condition, the heart rates average was 45.8 beat/min during daytime and 45.0 beat/min at night. The action potentials average was 1.76 $mutextrm{V}$during daytime and 1.75 $mutextrm{V}$ at night. 2. The heart rates average by three levels of electric stimulus were \circled1 In the stimulus condition, the heart rates were 34.9 beat/min during daytime and 33.4 beat/min at night for the 20 Vp level, 36.8 bea/min during daytime and 36.0 beat/min at night for the 30 Vp level, and 38.0 beat/min during daytime and 36.4 beat/min at night for the 40Vp level. \circled2 In the recovery condition, the action potentials were 45.5 beat/min during daytime an 45.1 beat/min at night for the 20Vp level, 47.9 beat/min during daytime and 49.0 beat/min at night for the 30Vp level, and 51.4 beat/min during daytime and 50.7 beat/min at night for the 40Vp level 3. The action potentials average by three levels of electric stimulus were, \circled1 In the stimulus condition, action potentials were 2.54 $mutextrm{V}$ during daytime and 2.39 $mutextrm{V}$ at night for the 20 Vp level, 3.30 $mutextrm{V}$ during daytime and 2.30 $mutextrm{V}$ at night for the 30 Vp level and 6.05 $mutextrm{V}$ during daytime and 3.23 $mutextrm{V}$ at night for the 40 Vp level. \circled2 In the recovery condition, action potentials were 1.92 $mutextrm{V}$ during daytime and 1.95 $mutextrm{V}$ at night for the 20 Vp level and 2.78 $mutextrm{V}$ during daytime and 2.21 $mutextrm{V}$ at night for the 30Vp level and 3.6 0 $mutextrm{V}$ during daytime and 2.98 $mutextrm{V}$ at night for the 40 Vp level.

Study and Survey of Operating Efficiency with Cool Storage System (빙축열냉방시스템의 운전효율에 관한 조사연구)

  • 손학식;심창호;김강현;김재철
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • The purpose of this study is to maintain high efficiency and reasonable use of cool thermal storage systems operated in the domestic building sector. As the result of efficiency test from the five types of operated cool storage systems on the condition that COP ranges are 2.6 to 3.4 during the day time and 2.1 to 3.0 during the night time and it decreased by more than 30% of rated COP given 3.8 to 3.0. The Analysis of cool storage rate shows that only 3 (21.4%) systems out of 15 buildings hold to over 40% capacity for its total capacity. To prevent the decrease in operating efficiency, it should correct the malfunction of 3-way valve and expansion valve and the mistake of control values for schedule program and increase cooling tower capacity. In order to improve piping line, it needs bypass brine line off refrigerator, separation of chilled water line with Ice Slurry system at day and night time and speed control of chilled and warm water pumps. This study does require the more studies on improving difficulty of increasing cooling load with Ice on Coil system, waterproofing with Ice Ball system, COP drop during the night time with Ice Lens, low operating temperature during the day time with Ice Slurry and increasing of Power loss due to hot gas de-icing with Ice Harvest in the future.

Genome-wide association study of cold stress in rice at early young microspore stage (Oryza sativa L.).

  • Kim, Mijeong;Kim, Taegyu;Lee, Yoonjung;Choi, Jisu;Cho, Giwon;Lee, Joohyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.313-313
    • /
    • 2017
  • Cold stress is one of the most influenced factors to rice yield. In order to identify genes related to cold stress in fertility stage, genome-wide association study (GWAS) was conducted. Cultivated 129 rice germplasm were moved in the growth chamber under the condition of $12^{\circ}C/RH70%$(12h day/12h night when the rice plant was grown in 10 DBH(days before heading). Also, rice plant as control was moved in the green house under condition of $28^{\circ}C/RH70%$(12h day/12h night). After 4 days the plants were moved in a greenhouse. The fertility of rice plant were monitored after the grain were fully grown. The most tolerant rice germplasm to cold stress were Cheongdo-Hwayang-12 and IR38 as 63.1 and 61.8 of fertility and the most recessive rice germplasm were Danyang38 and 8 rice germplasm as 0. As a result of GWAS with re-sequencing data and fertility after cold treatment germplasm using genome association and prediction integrated tool (GAPIT), 99 single-nucleotide polymorphisms (SNPs) were observed by applying a significance threshold of -logP>4.5 determined by QQ plot. With SNPs region, 14 candidate genes responded to cold stress in fertility stage were identified.

  • PDF

Ground-based Observations for the Upper Atmosphere at King Sejong Station, Antarctica

  • Jee, Geonhwa;Kim, Jeong-Han;Lee, Changsup;Kim, Yong Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.169-176
    • /
    • 2014
  • Since the operation of the King Sejong Station (KSS) started in Antarctic Peninsula in 1989, there have been continuous efforts to perform the observation for the upper atmosphere. The observations during the initial period of the station include Fabry-Perot Interferometer (FPI) and Michelson Interferometer for the mesosphere and thermosphere, which are no longer in operation. In 2002, in collaboration with York University, Canada, the Spectral Airglow Temperature Imager (SATI) was installed to observe the temperature in the mesosphere and lower thermosphere (MLT) region and it has still been producing the mesopause temperature data until present. The observation was extended by installing the meteor radar in 2007 to observe the neutral winds and temperature in the MLT region during the day and night in collaboration with Chungnam National University. We also installed the all sky camera in 2008 to observe the wave structures in the MLT region. All these observations are utilized to study on the physical characteristics of the MLT region and also on the wave phenomena such as the tide and gravity wave in the upper atmosphere over KSS that is well known for the strong gravity wave activity. In this article, brief introductions for the currently operating instruments at KSS will be presented with their applications for the study of the upper atmosphere.

Accumuation Pattern of Nitrate-Nitrogen in Sorghum And Maize Plants as Affected by Morphological Characteristics And Environmental Temperature (Sorghum 및 옥수수의 형태적 특성과 재배온도가 Nitrate-Nitrogen 축적에 미치는 영향)

  • 김정갑
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.3
    • /
    • pp.146-152
    • /
    • 1987
  • Sorghum cv. Pioneer 93 1, sorghum-sudangrass hybrid cv. Sioux and maize plant cv. Blizzard were assayed for toxic concentrations of nitrate-nitrogen ($NO_3$-N) and their relationship to morphological characteristics and environmental temperature in a field and phytotron trial. In the phytotron, sorghum and maize plants ranging from emergence to heading stage, were grown under different day/night temperatures of 30125, 25/20,28/18 and 1818 degree C. Nitrate-nitrogen in sorghum and maize plants was accumulated mainly in stems. Therefore nitrate concentration in the young plants was increased as development of stalks advanced and was highest at the stage of 3-4 leaves, when the plants had a leaf weight ratio 0.78-0.80 g/g plant weight. However, nitrate concentrations of the plant decreased as morphological development progressed, especially from the stage of growing point differentiation. Correlation coefficients showed a positive correlation of nitrate concentration with leaf weight ratio, leaf area ratio and specific leaf area, while plant height, dry matter percentage and absolute growth rate showed a negative association with TEX>$NO_3$-N ($P{\le}0.1$%). Cyanogenic glycosides, total nitrogen and crude protein were close associated with nitrate accumulation, and positively significant ($P{\le}0.1$%). High temperature over 30/25^{\circ}C.$ for 3 weeks increased N-uptake and dry matter accumulation, but reduced nitrate concentration. Under cold temperature below 18/8^{\circ}C.$ concentration of nitrate-N was increased in spite of its limited nitrogen uptake and plant growth.

  • PDF

Effect of Hot Environment on the Body Temperature and Plasma Cortisol Concentration in Ruminant (高溫環境이 反芻家畜의 체온 및 혈장 Cortisol 농도에 미치는 影響)

  • Chung, Tae-Young;Yang, Young-Jik;Lee, Sang-Rak;Yoon, Hee-Sup
    • Journal of Animal Environmental Science
    • /
    • v.1 no.1
    • /
    • pp.39-45
    • /
    • 1995
  • Temperatures of blood and skin, respiratory rate and plasma cortisol concentration in sheep at a warm (average ambient temperature of $15.3^{\circ}C$) and a hot (average ambient temperature of $27.0^{\circ}C$ environment were measured to investigate the effect of hot environment on the physiological responses in ruminant. Temperatures of core, mean skin and mean body in sheep were tended to increase at day time and to decrease at night time at both warm and hot environment, while 24-hr average for those temperatures were significantly higher at hot environment than at warm environment (P<0.05). The calculated body heat content was higher in sheep at hot environment than at warm environment (P<0.05). Respiratory rate and plasma cortisol concentration had no significant differences between warm and hot environment, suggesting that sheep were not stress by the hot environment in this experiment. It is, therefore, suggested that sheep were well adopted to hot environment by increasing body heat content against heat stress.

  • PDF

A Study on the Contamination of Photovoltaic Cells by Fine Dust in the Air (공기 중의 미세먼지에 의한 태양전지의 오염에 관한 연구)

  • HAN, JIN MOK;CHOI, SOOKWANG;KIM, SEWOONG;JUNG, YOUNGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.3
    • /
    • pp.292-298
    • /
    • 2018
  • The contamination of photovoltaic (PV) cells reduces the incidence of sunlight and reduces the power generation output of PV cells. The main factor influencing the contamination of PV cells installed outdoors is the fine dust in the air, but the influence of temperature, humidity, rain and wind can be considered. In this paper, experiments on the contamination of PV cells according to the fine dust density, the temperature and humidity of air were investigated. As results of this study, the contamination area of PV cells increases with contamination time and cumulative fine dust density in the air. The contamination of PV cells increases when the temperature is low and the humidity is high. Also, as the contamination of PV cells is affected to the wind, the deviation of contamination area is happened.