• Title/Summary/Keyword: dataset construction

Search Result 195, Processing Time 0.024 seconds

Plant Species Richness in Korea Utilizing Integrated Biological Survey Data (생물기초조사 통합자료를 활용한 우리나라 식물종 풍부도 분석)

  • Seungbum Hong;Jieun Oh;Jaegyu Cha;Kyungeun Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.363-374
    • /
    • 2023
  • The limitation in deriving the species richness representing the entire country of South Korea lies in its relatively short history of species field observations and the scattered observation data, which has been collected by various organizations in different fields. In this study, a comprehensive compilation of the observation data for plants held by agencies under the Ministry of Environment was conducted, enabling the construction of a time series dataset spanning over 100 years. The data integration was carried out using minimal criteria such as species name, observed location, and time (year) followed by data verification and correction processes. Based on the integrated plant species data, the comprehensive collection of plant species in South Korea has occurred predominantly since 2000, and the number of plant species explored through these surveys appears to be converging recently. The collection of species survey data necessary for deriving national-level biodiversity information has recently begun to meet the necessary conditions. Applying the Chao 2 method, the species richness of indigenous plants estimated at 3,182.6 for the 70-year period since 1951. A minimum cumulative period of 7 years is required for this estimation. This plant species richness from this study can be a baseline to study future changes in species richness in South Korea. Moreover, the integrated data with the estimation method for species richness used in this study appears to be applicable to derive regional biodiversity indices such as for local government units as well.

Applicability Evaluation of Deep Learning-Based Object Detection for Coastal Debris Monitoring: A Comparative Study of YOLOv8 and RT-DETR (해안쓰레기 탐지 및 모니터링에 대한 딥러닝 기반 객체 탐지 기술의 적용성 평가: YOLOv8과 RT-DETR을 중심으로)

  • Suho Bak;Heung-Min Kim;Youngmin Kim;Inji Lee;Miso Park;Seungyeol Oh;Tak-Young Kim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1195-1210
    • /
    • 2023
  • Coastal debris has emerged as a salient issue due to its adverse effects on coastal aesthetics, ecological systems, and human health. In pursuit of effective countermeasures, the present study delineated the construction of a specialized image dataset for coastal debris detection and embarked on a comparative analysis between two paramount real-time object detection algorithms, YOLOv8 and RT-DETR. Rigorous assessments of robustness under multifarious conditions were instituted, subjecting the models to assorted distortion paradigms. YOLOv8 manifested a detection accuracy with a mean Average Precision (mAP) value ranging from 0.927 to 0.945 and an operational speed between 65 and 135 Frames Per Second (FPS). Conversely, RT-DETR yielded an mAP value bracket of 0.917 to 0.918 with a detection velocity spanning 40 to 53 FPS. While RT-DETR exhibited enhanced robustness against color distortions, YOLOv8 surpassed resilience under other evaluative criteria. The implications derived from this investigation are poised to furnish pivotal directives for algorithmic selection in the practical deployment of marine debris monitoring systems.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

Performance analysis of Frequent Itemset Mining Technique based on Transaction Weight Constraints (트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법의 성능분석)

  • Yun, Unil;Pyun, Gwangbum
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • In recent years, frequent itemset mining for considering the importance of each item has been intensively studied as one of important issues in the data mining field. According to strategies utilizing the item importance, itemset mining approaches for discovering itemsets based on the item importance are classified as follows: weighted frequent itemset mining, frequent itemset mining using transactional weights, and utility itemset mining. In this paper, we perform empirical analysis with respect to frequent itemset mining algorithms based on transactional weights. The mining algorithms compute transactional weights by utilizing the weight for each item in large databases. In addition, these algorithms discover weighted frequent itemsets on the basis of the item frequency and weight of each transaction. Consequently, we can see the importance of a certain transaction through the database analysis because the weight for the transaction has higher value if it contains many items with high values. We not only analyze the advantages and disadvantages but also compare the performance of the most famous algorithms in the frequent itemset mining field based on the transactional weights. As a representative of the frequent itemset mining using transactional weights, WIS introduces the concept and strategies of transactional weights. In addition, there are various other state-of-the-art algorithms, WIT-FWIs, WIT-FWIs-MODIFY, and WIT-FWIs-DIFF, for extracting itemsets with the weight information. To efficiently conduct processes for mining weighted frequent itemsets, three algorithms use the special Lattice-like data structure, called WIT-tree. The algorithms do not need to an additional database scanning operation after the construction of WIT-tree is finished since each node of WIT-tree has item information such as item and transaction IDs. In particular, the traditional algorithms conduct a number of database scanning operations to mine weighted itemsets, whereas the algorithms based on WIT-tree solve the overhead problem that can occur in the mining processes by reading databases only one time. Additionally, the algorithms use the technique for generating each new itemset of length N+1 on the basis of two different itemsets of length N. To discover new weighted itemsets, WIT-FWIs performs the itemset combination processes by using the information of transactions that contain all the itemsets. WIT-FWIs-MODIFY has a unique feature decreasing operations for calculating the frequency of the new itemset. WIT-FWIs-DIFF utilizes a technique using the difference of two itemsets. To compare and analyze the performance of the algorithms in various environments, we use real datasets of two types (i.e., dense and sparse) in terms of the runtime and maximum memory usage. Moreover, a scalability test is conducted to evaluate the stability for each algorithm when the size of a database is changed. As a result, WIT-FWIs and WIT-FWIs-MODIFY show the best performance in the dense dataset, and in sparse dataset, WIT-FWI-DIFF has mining efficiency better than the other algorithms. Compared to the algorithms using WIT-tree, WIS based on the Apriori technique has the worst efficiency because it requires a large number of computations more than the others on average.

Ecological Health Assessments on Turbidwater in the Downstream After a Construction of Yongdam Dam (용담댐 건설후 하류부 하천 생태계의 탁수영향 평가)

  • Kim, Ja-Hyun;Seo, Jin-Won;Na, Young-Eun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.130-142
    • /
    • 2007
  • This study was to examine impacts of turbid water on fish community in the downstream of Yongdam Dam during the period from June to October 2006. For the research, we selected six sampling sites in the field: two sites were controls with no influences of turbid water from the dam and other remaining four sites were the stations for an assessment of potential turbid effects. We evaluated integrative health conditions throughout applications of various models such as necropsy-based fish health assessment model (FHA), Index of Biological Integrity (IBI) using fish assemblages, and Qualitative Habitat Evaluation Index (QHEI). Laboratory tests on fish exposure under 400 NTU were performed to find out impact of turbid water using scanning electron microscope (SEM). Results showed that fine solid particles were clogging in the gill in the treatments, while particles were not found in the control. This results indicate that when inorganic turbidity increases abruptedly, fish may have a mechanical abrasion or respiratory blocking. The stream health condition, based on the IBI values, ranged between 38 and 48 (average: 42), indicating a "excellent" or "good" condition after the criteria of US EPA (1993). In the mean time, physical habitat condition, based on the QHEI, ranged 97 to 187 (average 154), indicating a "suboptimal condition". These biological outcomes were compared with chemical dataset: IBI values were more correlated (r=0.526, p<0.05, n=18) with QHEI rather than chemical water quality, based on turbidity (r=0.260, p>0.05, n=18). Analysis of the FHA showed that the individual health indicated "excellent condition", while QHEI showed no habitat disturbances (especially bottom substrate and embeddeness), food-web, and spawning place. Consequently, we concluded that the ecological health in downstream of Yongdam Dam was not impacted by the turbid water.