• Title/Summary/Keyword: data-driven decision making

Search Result 83, Processing Time 0.023 seconds

Proposal of Maintenance Scenario and Feasibility Analysis of Bridge Inspection using Bayesian Approach (베이지안 기법을 이용한 교량 점검 타당성 분석 및 유지관리 시나리오 제안)

  • Lee, Jin Hyuk;Lee, Kyung Yong;Ahn, Sang Mi;Kong, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.505-516
    • /
    • 2018
  • In order to establish an efficient bridge maintenance strategy, the future performance of a bridge must be estimated by considering the current performance, which allows more rational way of decision-making in the prediction model with higher accuracy. However, personnel-based existing maintenance may result in enormous maintenance costs since it is difficult for a bridge administrator to estimate the bridge performance exactly at a targeting management level, thereby disrupting a rational decision making for bridge maintenance. Therefore, in this work, we developed a representative performance prediction model for each bridge element considering uncertainty using domestic bridge inspection data, and proposed a bayesian updating method that can apply the developed model to actual maintenance bridge with higher accuracy. Also, the feasibility analysis based on calculation of maintenance cost for monitoring maintenance scenario case is performed to propose advantages of the Bayesian-updating-driven preventive maintenance in terms of the cost efficiency in contrast to the conventional periodic maintenance.

Quality monitoring of complex manufacturing systems on the basis of model driven approach

  • Castano, Fernando;Haber, Rodolfo E.;Mohammed, Wael M.;Nejman, Miroslaw;Villalonga, Alberto;Lastra, Jose L. Martinez
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.495-506
    • /
    • 2020
  • Monitoring of complex processes faces several challenges mainly due to the lack of relevant sensory information or insufficient elaborated decision-making strategies. These challenges motivate researchers to adopt complex data processing and analysis in order to improve the process representation. This paper presents the development and implementation of quality monitoring framework based on a model-driven approach using embedded artificial intelligence strategies. In this work, the strategies are applied to the supervision of a microfabrication process aiming at showing the great performance of the framework in a very complex system in the manufacturing sector. The procedure involves two methods for modelling a representative quality variable, such as surface roughness. Firstly, the hybrid incremental modelling strategy is applied. Secondly, a generalized fuzzy clustering c-means method is developed. Finally, a comparative study of the behavior of the two models for predicting a quality indicator, represented by surface roughness of manufactured components, is presented for specific manufacturing process. The manufactured part used in this study is a critical structural aerospace component. In addition, the validation and testing are performed at laboratory and industrial levels, demonstrating proper real-time operation for non-linear processes with relatively fast dynamics. The results of this study are very promising in terms of computational efficiency and transfer of knowledge to manufacturing industry.

A Study on the Analysis of Attracting Factors for Global Foreign Direct Investment Inflows

  • Kim, Moo-Soo;Lee, Chan-Hee
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.1
    • /
    • pp.37-52
    • /
    • 2022
  • Purpose - The objective of this study is to investigate what motivates global FDI inflows in the different economic development level and to clarify the FDI motivation type in the level of qualitative economic growth. Design/methodology/approach - Major macroscopic social·economic factors induced FDI inflows were analyzed using fixed-effect panel regression with 30-year panel data of 28 countries from 1985 to 2014. For analysis in the stage of economic growth, two category of developed and developing countries was used. And to analyze FDI motivation type in the level of qualitative economic growth, 4 shares of GDP; consumption·government·investment expenditure and export, was used as explanatory variable. Findings - In developed country, TFP(total factor productivity) and GDP have a great influence on FDI inflows, and consumption and labor compensation have a slight effect. This result indicates that the market seeking-driven, horizontal type investment is shown along with efficiency seeking investment. In developing country, human capital and TFP is shown to have greater impact on FDI inflows and labor compensation, exports, investment and government expenditures also have impacts. Thus it has confirmed that not only efficiency-seeking vertical investment for using low cost well educated laborer, but also government-driven economic growth and export policies could affect the FDI inflows. Research implications or Originality - The FDI investment decision making of multinational companies is decided by their own purpose. But, in the concept of as follows; 1) FDI is a long-term capital flowing for maximization of economic utility with limited global resource, 2) Thus FDI could be affected by macro socio·economic factors of host country. 3) Also such macro factors is different by each economic growth qualitative level. Therefore macro socio·economic factors of each country could be affected by the qualitative level of their own economic growth. To attract FDI inflows, it is desirable to implement differentiated incentive policies in the qualitative level of economic growth. Furthermore in developing countries it is recommended to implement government driven economic growth policies as follows; fostering well educated human resources, improving technology productivity in the relative lower cost labor market compared to developed countries and boosting international export volume.

Graph neural network based multiple accident diagnosis in nuclear power plants: Data optimization to represent the system configuration

  • Chae, Young Ho;Lee, Chanyoung;Han, Sang Min;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2859-2870
    • /
    • 2022
  • Because nuclear power plants (NPPs) are safety-critical infrastructure, it is essential to increase their safety and minimize risk. To reduce human error and support decision-making by operators, several artificial-intelligence-based diagnosis methods have been proposed. However, because of the nature of data-driven methods, conventional artificial intelligence requires large amount of measurement values to train and achieve enough diagnosis resolution. We propose a graph neural network (GNN) based accident diagnosis algorithm to achieve high diagnosis resolution with limited measurements. The proposed algorithm is trained with both the knowledge about physical correlation between components and measurement values. To validate the proposed methodology has a sufficiently high diagnostic resolution with limited measurement values, the diagnosis of multiple accidents was performed with limited measurement values and also, the performance was compared with convolution neural network (CNN). In case of the experiment that requires low diagnostic resolution, both CNN and GNN showed good results. However, for the tests that requires high diagnostic resolution, GNN greatly outperformed the CNN.

A Digital Twin Architecture for Automotive Logistics- An Industry Case Study

  • Gyusun Hwang;Jun-hee Han;Haejoong Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2399-2416
    • /
    • 2024
  • The current automotive industry is transitioning from Internal Combustion Engine (ICE) vehicles to Electric Vehicles (EVs), adopting a mixed assembly production approach to respond to fluctuating demand. While mixed assembly production offers the advantages of lower investment costs and flexibility in responding to changing demands, the supply of EV components requires more extensive provisioning compared to ICE vehicle components, potentially leading to unexpected issues such as congestion of transport vehicles. This study proposes a digital twin system architecture that uses Discrete Event Simulation (DES) and Business Intelligence (BI) tools to specifically address logistics challenges. The proposed architecture facilitates real-time, data-driven decision making across three layers; Data source, Simulation, and BI. It was implemented in factories engaged in the mixed assembly production of ICE and EV vehicles. The simulation challenges involve a tier 1 vendor supplying parts to Korean automobile manufacturers that produce both ICE and EV parts. A total of 240 scenarios were created to run the simulations. The deployment of the proposed architecture demonstrates its capability to quickly respond to diverse experimental situations and promptly identify potential issues.

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.

Data Analytics in Education : Current and Future Directions (빅데이터를 활용한 맞춤형 교육 서비스 활성화 방안연구)

  • Kwon, Young Ok
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.87-99
    • /
    • 2013
  • Massive increases in data available to an organization are creating a new opportunity for competitive advantage. In this era of big data, developing analytics capabilities, therefore, becomes critical to take advantage of internal and external data and gain insights for data-driven decision making. However, the use of data in education is in its infancy, in comparison with business and government, and the potential for data analytics to impact education services is growing. In this paper, I survey how universities are currently using education data to improve students' performance and administrative efficiency, and propose new ways of extending the current use. In addition, with the so-called data scientist shortage, universities should be able to train professionals with data analytics skills. This paper discusses which skills are valuable to data scientists and introduces various training and certification programs offered by universities and industry. I finally conclude the paper by exploring new curriculums where students, by themselves, can learn how to find and use relevant data even in any courses.

Implementation of Slaving Data Processing Function for Mission Control System in Space Center (우주센터 발사통제시스템의 추적연동정보 처리기능 구현)

  • Choi, Yong-Tae;Ra, Sung-Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.31-39
    • /
    • 2014
  • In KSLV-I launch mission, real-time data from the tracking stations are acquired, processed and distributed by the Mission Control System to the user group who needed to monitor processed data for safety and flight monitoring purposes. The processed trajectory data by the mission control system is sent to each tracking system for target designation in case of tracking failure. Also, the processed data are used for decision making for flight termination when anomalies occur during flight of the launch vehicle. In this paper, we propose the processing mechanism of slaving data which plays a key role of launch vehicle tracking mission. The best position data is selected by predefined logic and current status after every available position data are acquired and pre-processed. And, the slaving data is distributed to each tracking stations through time delay is compensated by extrapolation. For the accurate processing, operation timing of every procesing modules are triggered by time-tick signal(25ms period) which is driven from UTC(Universial Time Coordinates) time. To evaluate the proposed method, we compared slaving data to the position data which received by tracking radar. The experiments show the average difference value is below 0.01 degree.

Extended CEP Model for Effective Enterprise Systems Service Monitoring

  • Kum, Deuk Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.807-825
    • /
    • 2020
  • In recent years, business environments have become more complex; therefore, enterprises must be capable of responding flexibly and agilely. For these purposes, effective enterprise systems service monitoring and early decision making based on the same, emerge as core competency of the enterprise. In addition, enterprise system techniques that filter meaningful data are needed to event processing. However, the existing study related with this is nothing but discovering of service faults by monitoring depending upon API of BPEL engine or middleware, or is nothing but processing of simple events based on low-level events. Accordingly, there would be limitations to provide useful business information. In this study, we present an extended event processing model that enables delivery of more valuable and useful business information through situation detection. Primarily, the event processing architecture in an enterprise system is proposed as a definite approach, and then define an event meta-model suitable for the proposed architecture. Based on the defined model, we propose the syntax and semantics of the elements that make up the event processing language include various and progressive event operators, the rules, complex event pattern, etc. In addition, an event context mechanism is proposed to analyze more delicate events. Finally, the effectiveness and applicability of proposed approach is presented through a case study.

QuLa: Queue and Latency-Aware Service Selection and Routing in Service-Centric Networking

  • Smet, Piet;Simoens, Pieter;Dhoedt, Bart
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.306-320
    • /
    • 2015
  • Due to an explosive growth in services running in different datacenters, there is need for service selection and routing to deliver user requests to the best service instance. In current solutions, it is generally the client that must first select a datacenter to forward the request to before an internal load-balancer of the selected datacenter can select the optimal instance. An optimal selection requires knowledge of both network and server characteristics, making clients less suitable to make this decision. Information-Centric Networking (ICN) research solved a similar selection problem for static data retrieval by integrating content delivery as a native network feature. We address the selection problem for services by extending the ICN-principles for services. In this paper we present Queue and Latency, a network-driven service selection algorithm which maps user demand to service instances, taking into account both network and server metrics. To reduce the size of service router forwarding tables, we present a statistical method to approximate an optimal load distribution with minimized router state required. Simulation results show that our statistical routing approach approximates the average system response time of source-based routing with minimized state in forwarding tables.